Determination of the~Jump of a~Function of Generalized Bounded Variation by the~Derivatives of a~Trigonometric Interpolation Polynomial
Matematičeskie zametki, Tome 76 (2004) no. 1, pp. 78-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain formulas expressing the value of the jump of a bounded periodic function of harmonic bounded variation in a neighborhood of the point under consideration via the derivatives of odd order of the Lagrange trigonometric interpolation polynomial with equidistant nodes and via the derivatives of even order of the conjugate polynomial.
@article{MZM_2004_76_1_a7,
     author = {A. A. Kelzon},
     title = {Determination of {the~Jump} of {a~Function} of {Generalized} {Bounded} {Variation} by {the~Derivatives} of {a~Trigonometric} {Interpolation} {Polynomial}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {78--86},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a7/}
}
TY  - JOUR
AU  - A. A. Kelzon
TI  - Determination of the~Jump of a~Function of Generalized Bounded Variation by the~Derivatives of a~Trigonometric Interpolation Polynomial
JO  - Matematičeskie zametki
PY  - 2004
SP  - 78
EP  - 86
VL  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a7/
LA  - ru
ID  - MZM_2004_76_1_a7
ER  - 
%0 Journal Article
%A A. A. Kelzon
%T Determination of the~Jump of a~Function of Generalized Bounded Variation by the~Derivatives of a~Trigonometric Interpolation Polynomial
%J Matematičeskie zametki
%D 2004
%P 78-86
%V 76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a7/
%G ru
%F MZM_2004_76_1_a7
A. A. Kelzon. Determination of the~Jump of a~Function of Generalized Bounded Variation by the~Derivatives of a~Trigonometric Interpolation Polynomial. Matematičeskie zametki, Tome 76 (2004) no. 1, pp. 78-86. http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a7/

[1] Golubov B. I., “Opredelenie skachka funktsii ogranichennoi $p$-variatsii po ee ryadu Fure”, Matem. zametki, 12:1 (1972), 19–28 | MR | Zbl

[2] Wiener N., “The quadratic variation of a function and its Fourier coefficients”, J. Math. Phys., 3 (1924), 72–94 | Zbl

[3] Fejer L., “Über die Bestimmung des Sprunges der Funktion aus Fourierreihe”, J. Reine Angew. Math., 142:1 (1912), 165–188

[4] Czillag P., “Über die Fourierkonstanten einer Funktion von Beschränkter Schwankung”, Mat. Phys. Lapok, 27 (1918), 301–308

[5] Zigmund A., Trigonometricheskie ryady, T. I, Mir, M., 1965

[6] Avdispahić M., “On the determination of the jump of a function by its Fourier series”, Acta Math. Hung., 48:3–4 (1986), 267–271 | DOI | MR | Zbl

[7] Kvernadze G., “Determination of the jumps of a bounded function by its Fourier series”, J. Approx. Theory, 92:2 (1998), 167–190 | DOI | MR | Zbl

[8] Waterman D., “On convergence of Fourier series of functions of generalized bounded variation”, Studia Math., 44:2 (1972), 107–117 | MR | Zbl

[9] Kelzon A. A., Opredelenie skachka funktsii ogranichennoi $p$-variatsii s pomoschyu trigonometricheskogo interpolirovaniya, Dep. v VINITI No 2434-78 Dep., Kazan, 1977

[10] Natanson I. P., Konstruktivnaya teoriya funktsii, GITTL, M.–L., 1949

[11] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971

[12] Waterman D., “On the summability of Fourier series of functions of $\Lambda$-bounded variation”, Studia Math., 55:1 (1976), 87–95 | Zbl

[13] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, T. II, Lan, SPb., 1997

[14] Kelzon A. A., “Opredelenie skachka funktsii obobschennoi ogranichennoi variatsii s pomoschyu trigonometricheskogo interpolirovaniya”, Nauchno-tekhn. konf. prof.-prep. sostava i nauchnykh sotrudnikov, Tezisy dokladov, Gos. morskaya akademiya im. adm. S. O. Makarova, 2001, 174–175