Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2004_76_1_a7, author = {A. A. Kelzon}, title = {Determination of {the~Jump} of {a~Function} of {Generalized} {Bounded} {Variation} by {the~Derivatives} of {a~Trigonometric} {Interpolation} {Polynomial}}, journal = {Matemati\v{c}eskie zametki}, pages = {78--86}, publisher = {mathdoc}, volume = {76}, number = {1}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a7/} }
TY - JOUR AU - A. A. Kelzon TI - Determination of the~Jump of a~Function of Generalized Bounded Variation by the~Derivatives of a~Trigonometric Interpolation Polynomial JO - Matematičeskie zametki PY - 2004 SP - 78 EP - 86 VL - 76 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a7/ LA - ru ID - MZM_2004_76_1_a7 ER -
%0 Journal Article %A A. A. Kelzon %T Determination of the~Jump of a~Function of Generalized Bounded Variation by the~Derivatives of a~Trigonometric Interpolation Polynomial %J Matematičeskie zametki %D 2004 %P 78-86 %V 76 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a7/ %G ru %F MZM_2004_76_1_a7
A. A. Kelzon. Determination of the~Jump of a~Function of Generalized Bounded Variation by the~Derivatives of a~Trigonometric Interpolation Polynomial. Matematičeskie zametki, Tome 76 (2004) no. 1, pp. 78-86. http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a7/
[1] Golubov B. I., “Opredelenie skachka funktsii ogranichennoi $p$-variatsii po ee ryadu Fure”, Matem. zametki, 12:1 (1972), 19–28 | MR | Zbl
[2] Wiener N., “The quadratic variation of a function and its Fourier coefficients”, J. Math. Phys., 3 (1924), 72–94 | Zbl
[3] Fejer L., “Über die Bestimmung des Sprunges der Funktion aus Fourierreihe”, J. Reine Angew. Math., 142:1 (1912), 165–188
[4] Czillag P., “Über die Fourierkonstanten einer Funktion von Beschränkter Schwankung”, Mat. Phys. Lapok, 27 (1918), 301–308
[5] Zigmund A., Trigonometricheskie ryady, T. I, Mir, M., 1965
[6] Avdispahić M., “On the determination of the jump of a function by its Fourier series”, Acta Math. Hung., 48:3–4 (1986), 267–271 | DOI | MR | Zbl
[7] Kvernadze G., “Determination of the jumps of a bounded function by its Fourier series”, J. Approx. Theory, 92:2 (1998), 167–190 | DOI | MR | Zbl
[8] Waterman D., “On convergence of Fourier series of functions of generalized bounded variation”, Studia Math., 44:2 (1972), 107–117 | MR | Zbl
[9] Kelzon A. A., Opredelenie skachka funktsii ogranichennoi $p$-variatsii s pomoschyu trigonometricheskogo interpolirovaniya, Dep. v VINITI No 2434-78 Dep., Kazan, 1977
[10] Natanson I. P., Konstruktivnaya teoriya funktsii, GITTL, M.–L., 1949
[11] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971
[12] Waterman D., “On the summability of Fourier series of functions of $\Lambda$-bounded variation”, Studia Math., 55:1 (1976), 87–95 | Zbl
[13] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, T. II, Lan, SPb., 1997
[14] Kelzon A. A., “Opredelenie skachka funktsii obobschennoi ogranichennoi variatsii s pomoschyu trigonometricheskogo interpolirovaniya”, Nauchno-tekhn. konf. prof.-prep. sostava i nauchnykh sotrudnikov, Tezisy dokladov, Gos. morskaya akademiya im. adm. S. O. Makarova, 2001, 174–175