The Wiener--Hopf Integral Equation in the Supercritical Case
Matematičeskie zametki, Tome 76 (2004) no. 1, pp. 11-19

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the scalar homogeneous equation $$ S(x)=\int_0^\infty K(x-t)S(t)\,dt, \qquad x\in\mathbb R^+\equiv(0,\infty), $$ with symmetric kernel $K$: $K(-x)=K(x)$, $x\in\mathbb R_1$ satisfying the conditions $$ 0\leqslant K\in L_1(\mathbb R^+)\cap C^{(2)}(\mathbb R^+), \qquad \int_0^\infty K(t)\,dt>\frac12, $$ $K'\leqslant 0$ and $0\leqslant K''\downarrow$ on $\mathbb R^+$. We prove the existence of a real solution $S$ of the equation given above with asymptotic behavior $S(x)=O(x)$ as $x\to+\infty$.
@article{MZM_2004_76_1_a1,
     author = {L. G. Arabadzhyan},
     title = {The {Wiener--Hopf} {Integral} {Equation} in the {Supercritical} {Case}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {11--19},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a1/}
}
TY  - JOUR
AU  - L. G. Arabadzhyan
TI  - The Wiener--Hopf Integral Equation in the Supercritical Case
JO  - Matematičeskie zametki
PY  - 2004
SP  - 11
EP  - 19
VL  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a1/
LA  - ru
ID  - MZM_2004_76_1_a1
ER  - 
%0 Journal Article
%A L. G. Arabadzhyan
%T The Wiener--Hopf Integral Equation in the Supercritical Case
%J Matematičeskie zametki
%D 2004
%P 11-19
%V 76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a1/
%G ru
%F MZM_2004_76_1_a1
L. G. Arabadzhyan. The Wiener--Hopf Integral Equation in the Supercritical Case. Matematičeskie zametki, Tome 76 (2004) no. 1, pp. 11-19. http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a1/