Banach--Mazur Compacta are Aleksandrov Compactifications of $Q$-manifolds
Matematičeskie zametki, Tome 76 (2004) no. 1, pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, for all $n>2$, the Banach–Mazur compactum $Q(N)$ is the compactification of a $Q$-manifold by a Euclidean point. For $n=2$, this was known earlier.
@article{MZM_2004_76_1_a0,
     author = {S. M. Ageev and S. A. Bogatyi and D. Repov\v{s}},
     title = {Banach--Mazur {Compacta} are {Aleksandrov} {Compactifications} of $Q$-manifolds},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a0/}
}
TY  - JOUR
AU  - S. M. Ageev
AU  - S. A. Bogatyi
AU  - D. Repovš
TI  - Banach--Mazur Compacta are Aleksandrov Compactifications of $Q$-manifolds
JO  - Matematičeskie zametki
PY  - 2004
SP  - 3
EP  - 10
VL  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a0/
LA  - ru
ID  - MZM_2004_76_1_a0
ER  - 
%0 Journal Article
%A S. M. Ageev
%A S. A. Bogatyi
%A D. Repovš
%T Banach--Mazur Compacta are Aleksandrov Compactifications of $Q$-manifolds
%J Matematičeskie zametki
%D 2004
%P 3-10
%V 76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a0/
%G ru
%F MZM_2004_76_1_a0
S. M. Ageev; S. A. Bogatyi; D. Repovš. Banach--Mazur Compacta are Aleksandrov Compactifications of $Q$-manifolds. Matematičeskie zametki, Tome 76 (2004) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a0/

[1] West J., “On CE-images of the Hilbert cube and characterization of $Q$-manifolds”, Fund. Math., 106 (1980), 31–40 | MR

[2] Ageev S. M., Bogatyi S. A., Fabel P., “Kompakt Banakha–Mazura $Q(n)$ est AR”, Vestn. MGU. Ser. 1. Matem., mekh., 1998, no. 1, 11–13 | MR | Zbl

[3] Ageev S., Bogatyi S., The Banach–Mazur compactum in the dimension two, Topology Atlas Preprint No 291, 1997

[4] Ageev S. M., Bogatyi S. A., “O negomeomorfnosti kompakta Banakha–Mazura i gilbertova kuba”, UMN, 53:1 (1998), 209–210 | MR | Zbl

[5] Repovš D., “Geometric topology of the Banach–Mazur compacta”, Sūrikaisekikenkyūsho Kōkyūroku, 1074 (1999), 89–101 | Zbl

[6] Torunczyk H., West J., “The fine structure of $\exp S^1/S^1$; a $Q$-manifold hyperspace localization of the integers”, Proc. of the International Conference on Geometric Topology, PWN, Warsaw, 1980, 439–449 | MR

[7] Antonyan S., “The topology of the Banach–Mazur compactum”, Fund. Math., 166 (2000), 209–232 ; Antonyan S., “Universal proper $G$-spaces”, Topology Appl., 117 (2002), 23–43 | MR | Zbl | DOI | MR | Zbl

[8] Antonyan S., The topology of the Banach–Mazur compactum, Preprint No. 558, Instituto de Matematicas de la UNAM, 1997

[9] Ageev S. M., Repovš D., “On Banach–Mazur compacta”, J. Austral. Math. Soc. Ser. A, 69 (2000), 316–335 | DOI | MR | Zbl

[10] Bredon G., Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980 | Zbl

[11] John F., “Extremum problems with inequalities as subsidiary conditions”, Studies and Essays, Courant Anniversary Volume, Interscience, New York, 1948, 187–204

[12] Torunczyk H., “On CE-images of the Hilbert cube and characterization of $Q$-manifolds”, Fund. Math., 106 (1980), 31–40 | MR | Zbl

[13] van Mill J., Infinite Dimension Topology. Prerequisites and Introduction, North Holland, New York, 1989

[14] Abels H., “Universal proper $G$-spaces”, Math. Z., 159 (1978), 143–158 | DOI | MR | Zbl

[15] Lang S., Linear Algebra, Addison-Wesley Publ. Co., New York, 1971

[16] Burago D., Burago Yu., Ivanov S., A Course in Metric Geometry, Graduate Stud. in Math., 33, Amer. Math. Soc., Providence, RI, 2001 ; Hu S. T., Theory of Retracts, Wayne State Univ. Press, 1965 | MR | Zbl

[17] Ageev S. M., Repovsh D., “O metode Yavorovskogo v probleme sokhraneniya ekstenzornykh svoistv orbitnym funktorom”, Matem. zametki, 71:3 (2002), 470–472 | MR

[18] Bessaga C., Pelczynski A., Selected Topics in Infinite-Dimensional Topology, PWN, Warszaw, 1975 | Zbl

[19] Borsuk K., Teoriya retraktov, Mir, M., 1971

[20] Palais R. S., “On the existence of slices for actions of non-compact Lie groups”, Ann. of Math., 73:2 (1961), 295–323 | DOI | MR | Zbl