Banach--Mazur Compacta are Aleksandrov Compactifications of $Q$-manifolds
Matematičeskie zametki, Tome 76 (2004) no. 1, pp. 3-10

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, for all $n>2$, the Banach–Mazur compactum $Q(N)$ is the compactification of a $Q$-manifold by a Euclidean point. For $n=2$, this was known earlier.
@article{MZM_2004_76_1_a0,
     author = {S. M. Ageev and S. A. Bogatyi and D. Repov\v{s}},
     title = {Banach--Mazur {Compacta} are {Aleksandrov} {Compactifications} of $Q$-manifolds},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {76},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a0/}
}
TY  - JOUR
AU  - S. M. Ageev
AU  - S. A. Bogatyi
AU  - D. Repovš
TI  - Banach--Mazur Compacta are Aleksandrov Compactifications of $Q$-manifolds
JO  - Matematičeskie zametki
PY  - 2004
SP  - 3
EP  - 10
VL  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a0/
LA  - ru
ID  - MZM_2004_76_1_a0
ER  - 
%0 Journal Article
%A S. M. Ageev
%A S. A. Bogatyi
%A D. Repovš
%T Banach--Mazur Compacta are Aleksandrov Compactifications of $Q$-manifolds
%J Matematičeskie zametki
%D 2004
%P 3-10
%V 76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a0/
%G ru
%F MZM_2004_76_1_a0
S. M. Ageev; S. A. Bogatyi; D. Repovš. Banach--Mazur Compacta are Aleksandrov Compactifications of $Q$-manifolds. Matematičeskie zametki, Tome 76 (2004) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/MZM_2004_76_1_a0/