On the Lin Condition in Strong Ratio Limit Theorems
Matematičeskie zametki, Tome 75 (2004) no. 6, pp. 927-940.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new version of strong limit theorems for Lin ratios (1976) free of former restrictions such as the absolute continuity of the measures in question or the conservativeness of the corresponding operators is presented. As the most original statement of the paper (Theorem 5) states, one of the two basic Lin conditions holds automatically for a wide class of Markov chains and, in particular, for many random walks on groups. The proof is based on a substantial development of the author"s results (1980) concerning the behavior of multistep transition probabilities.
@article{MZM_2004_75_6_a10,
     author = {M. G. Shur},
     title = {On the {Lin} {Condition} in {Strong} {Ratio} {Limit} {Theorems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {927--940},
     publisher = {mathdoc},
     volume = {75},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a10/}
}
TY  - JOUR
AU  - M. G. Shur
TI  - On the Lin Condition in Strong Ratio Limit Theorems
JO  - Matematičeskie zametki
PY  - 2004
SP  - 927
EP  - 940
VL  - 75
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a10/
LA  - ru
ID  - MZM_2004_75_6_a10
ER  - 
%0 Journal Article
%A M. G. Shur
%T On the Lin Condition in Strong Ratio Limit Theorems
%J Matematičeskie zametki
%D 2004
%P 927-940
%V 75
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a10/
%G ru
%F MZM_2004_75_6_a10
M. G. Shur. On the Lin Condition in Strong Ratio Limit Theorems. Matematičeskie zametki, Tome 75 (2004) no. 6, pp. 927-940. http://geodesic.mathdoc.fr/item/MZM_2004_75_6_a10/

[1] Orey S., Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities, Van Nostrand, London, 1971 | Zbl

[2] Nummelin E., Obschie neprivodimye tsepi Markova i neotritsatelnye operatory, Mir, M., 1989

[3] Guivarc'h Y., “Théorèmes quotientes pour les marches aléatoires”, Astérisque, 74, 1980, 15–28 | Zbl

[4] Shur M. G., “Asimptoticheskie svoistva stepenei polozhitelnykh operatorov. I; II”, Teor. veroyatn. i ee primen., 29:4 (1984), 692–702 ; Теор. вероятн. и ее примен., 30:2 (1985), 241–251 | MR | Zbl | MR

[5] Shur M. G., “Predelnye teoremy dlya otnoshenii, assotsiirovannykh s samosopryazhennymi operatorami i simmetrichnymi tsepyami Markova”, Teor. veroyatn. i ee primen., 45:2 (2000), 268–288 | MR | Zbl

[6] Lin M., “Strong ratio limit theorems for mixing Markov operators”, Ann. Inst. Poincaré, 12:2 (1976), 181–191 | MR | Zbl

[7] Derrienic Y., “Lois “zero ou deux” pour les processus de Markov”, Ann. Inst. Poincaré, 12:2 (1976), 111–129 | MR

[8] Revyuz D., Tsepi Markova, RFFI, M., 1997

[9] Shur M. G., “New ratio limit theorems for Markov chains”, Analytic Methods in Applied Probability, In memory of F. Karpelevich, Amer. Math. Soc. Transl. (2), 207, ed. Yu. M. Suhov, Amer. Math. Soc., Providence, RI, 2002, 203–212 | MR | Zbl

[10] Shur M. G., “Asimptoticheskoe povedenie mnogoshagovykh veroyatnostei perekhoda”, Litovskii matem. zh., 20:4 (1980), 201–207 | MR

[11] Kingman J. F. C., “The exponential decay of Markov transition probabilities”, Proc. London Math. Soc., 13:50 (1963), 593–604 | DOI | MR | Zbl

[12] Horowits S., “On $\sigma$-finite invariant measures for Markov processes”, Israel J. Math., 6:2 (1968), 338–345 | DOI | MR

[13] Stone C., “Ratio limit theorems for random walks on groups”, Trans. Amer. Math. Soc., 125:1 (1966), 86–100 | DOI | MR | Zbl