Maximal Inequality for Weakly Dependent Random Fields
Matematičeskie zametki, Tome 75 (2004) no. 5, pp. 773-782.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a maximal inequality for weakly dependent random fields associated with decreasing covariances of functions (of a certain class) of elements of the field as the distance between the indexing sets tends to infinity.
@article{MZM_2004_75_5_a12,
     author = {A. P. Shashkin},
     title = {Maximal {Inequality} for {Weakly} {Dependent} {Random} {Fields}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {773--782},
     publisher = {mathdoc},
     volume = {75},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a12/}
}
TY  - JOUR
AU  - A. P. Shashkin
TI  - Maximal Inequality for Weakly Dependent Random Fields
JO  - Matematičeskie zametki
PY  - 2004
SP  - 773
EP  - 782
VL  - 75
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a12/
LA  - ru
ID  - MZM_2004_75_5_a12
ER  - 
%0 Journal Article
%A A. P. Shashkin
%T Maximal Inequality for Weakly Dependent Random Fields
%J Matematičeskie zametki
%D 2004
%P 773-782
%V 75
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a12/
%G ru
%F MZM_2004_75_5_a12
A. P. Shashkin. Maximal Inequality for Weakly Dependent Random Fields. Matematičeskie zametki, Tome 75 (2004) no. 5, pp. 773-782. http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a12/

[1] Petrov V. V., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987

[2] Doukhan P., Mixing: Properties and Examples, Lecture Notes in Statistics, 85, Springer, Berlin, 1994 | MR | Zbl

[3] Bulinski A. V., Keane M. S., “Invariance principle for associated random fields”, J. of Math. Sci., 81:5 (1996), 2905–2911 | DOI | MR | Zbl

[4] Wichura M. J., “Inequalities with applications to the weak convergence of random processes with multi-dimensional time parameters”, Ann. Math. Statist., 40:2 (1969), 681–687 | DOI | MR | Zbl

[5] Zhang L.-X., Wen J., “A weak convergence for negatively associated fields”, Statist. Probab. Lett., 53:3 (2001), 259–267 | DOI | MR | Zbl

[6] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977

[7] Bulinskii A. V., “Funktsionalnyi zakon povtornogo logarifma dlya assotsiirovannykh sluchainykh polei”, Fundament. i prikl. matem., 1:3 (1995), 623–639 | MR | Zbl

[8] Bulinski A. V., Suquet C., “Normal approximation for quasi-associated random fields”, Statist. Probab. Lett., 54:2 (2001), 215–226 | DOI | MR | Zbl

[9] Doukhan P., Lang G., “Rates in the empirical central limit theorem for stationary weakly dependent random fields”, Statistical Inference for Stochastic Processes, 5:2 (2002), 199–228 | DOI | MR | Zbl

[10] Doukhan P., Louhichi S., “A new weak dependence condition and application to moment inequalities”, Stochastic Process. Appl., 84:2 (1999), 313–342 | DOI | MR | Zbl

[11] Bulinskii A. V., Shabanovich E., “Asimptoticheskoe povedenie nekotorykh funktsionalov ot polozhitelno i otritsatelno zavisimykh sluchainykh polei”, Fundament. i prikl. matem., 4:2 (1998), 479–492 | MR | Zbl

[12] Shashkin A. P., “Kvaziassotsiirovannost gaussovskoi sistemy sluchainykh vektorov”, UMN, 57:6 (2002), 199–200 | MR | Zbl

[13] Bulinskii A. V., “Neravenstva dlya momentov summ assotsiirovannykh multiindeksirovannykh velichin”, Teoriya veroyatn. i ee primen., 38:2 (1993), 417–425 | MR | Zbl

[14] Bakhtin Yu. Yu., Bulinskii A. V., “Momentnye neravenstva dlya summ zavisimykh multiindeksirovannykh velichin”, Fundament. i prikl. matem., 3:4 (1997), 1101–1108 | MR | Zbl

[15] Moricz F., “A general moment inequality for the maximum of the rectangular partial sums of multiple series”, Acta Math. Hung., 41:3–4 (1983), 337–346 | DOI | MR | Zbl