Maximal Inequality for Weakly Dependent Random Fields
Matematičeskie zametki, Tome 75 (2004) no. 5, pp. 773-782

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a maximal inequality for weakly dependent random fields associated with decreasing covariances of functions (of a certain class) of elements of the field as the distance between the indexing sets tends to infinity.
@article{MZM_2004_75_5_a12,
     author = {A. P. Shashkin},
     title = {Maximal {Inequality} for {Weakly} {Dependent} {Random} {Fields}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {773--782},
     publisher = {mathdoc},
     volume = {75},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a12/}
}
TY  - JOUR
AU  - A. P. Shashkin
TI  - Maximal Inequality for Weakly Dependent Random Fields
JO  - Matematičeskie zametki
PY  - 2004
SP  - 773
EP  - 782
VL  - 75
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a12/
LA  - ru
ID  - MZM_2004_75_5_a12
ER  - 
%0 Journal Article
%A A. P. Shashkin
%T Maximal Inequality for Weakly Dependent Random Fields
%J Matematičeskie zametki
%D 2004
%P 773-782
%V 75
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a12/
%G ru
%F MZM_2004_75_5_a12
A. P. Shashkin. Maximal Inequality for Weakly Dependent Random Fields. Matematičeskie zametki, Tome 75 (2004) no. 5, pp. 773-782. http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a12/