Polynomial Models of Degree 5 and Algebras of Their Automorphisms
Matematičeskie zametki, Tome 75 (2004) no. 5, pp. 757-772.

Voir la notice de l'article provenant de la source Math-Net.Ru

In classifying and studying holomorphic automorphisms of surfaces, it is often convenient to pass to tangent model surfaces. This method is well developed for surfaces of type $(n,K)$, where $K\le n^2$; for such surfaces, tangent quadrics (i.e., surfaces determined by equations of degree 2) with a number of useful properties have been constructed. In recent years, for surfaces of higher codimensions, tangent model surfaces of degrees 3 and 4 with similar properties were constructed. However, this construction imposes new constraints on the codimension. In this paper, the same method is applied to surfaces of even higher codimension. Model surfaces of the fifth degree are constructed. It is shown that all the basic useful properties of model surfaces are preserved, in spite of a number of technical difficulties.
@article{MZM_2004_75_5_a11,
     author = {E. N. Shananina},
     title = {Polynomial {Models} of {Degree} 5 and {Algebras} of {Their} {Automorphisms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {757--772},
     publisher = {mathdoc},
     volume = {75},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a11/}
}
TY  - JOUR
AU  - E. N. Shananina
TI  - Polynomial Models of Degree 5 and Algebras of Their Automorphisms
JO  - Matematičeskie zametki
PY  - 2004
SP  - 757
EP  - 772
VL  - 75
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a11/
LA  - ru
ID  - MZM_2004_75_5_a11
ER  - 
%0 Journal Article
%A E. N. Shananina
%T Polynomial Models of Degree 5 and Algebras of Their Automorphisms
%J Matematičeskie zametki
%D 2004
%P 757-772
%V 75
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a11/
%G ru
%F MZM_2004_75_5_a11
E. N. Shananina. Polynomial Models of Degree 5 and Algebras of Their Automorphisms. Matematičeskie zametki, Tome 75 (2004) no. 5, pp. 757-772. http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a11/

[1] Chern S. S., Moser J. K., “Real hypersurfaces in complex manifolds”, Acta Math., 133:3–4 (1974), 219–271 | DOI | MR

[2] Beloshapka V. K., “O golomorfnykh preobrazovaniyakh kvadriki”, Matem. sb., 182:2 (1991), 203–219 | Zbl

[3] Tumanov A. E., “Konechnomernost gruppy $CR$-avtomorfizmov standartnogo $CR$-mnogoobraziya i sobstvennye golomorfnye otobrazheniya oblastei Zigelya”, Izv. AN SSSR. Ser. matem., 52:3 (1988), 651–659 | MR | Zbl

[4] Beloshapka V. K., “Polinomialnye modeli veschestvennykh mnogoobrazii”, Izv. RAN. Ser. matem., 65:4 (2001), 3–20 | MR | Zbl

[5] Shananina E. N., “Modeli $CR$-mnogoobrazii tipa $(1,K)$ pri $3\le K\le7$ i ikh avtomorfizmy”, Matem. zametki, 67:3 (2000), 452–459 | MR | Zbl

[6] Palamodov V. P., Lineinye differentsialnye operatory s postoyannymi koeffitsientami, Nauka, M., 1967

[7] Beloshapka V. K., “Kubicheskaya model veschestvennogo mnogoobraziya”, Matem. zametki, 70:4 (2001), 503–519 | MR | Zbl

[8] Bloom T., Graham I., “On type conditions for generic real submanifolds of $\mathbb C^n$”, Invent. Math., 40 (1977), 217–243 | DOI | MR

[9] Baouendi M. S., Ebenfelt P., Rothschild L. P., “$CR$-authomorphisms of real analitic manifolds in complex space”, Comm. Anal. Geom., 6:2 (1998), 291–315 | MR | Zbl