Normal Matrices and an Extension of Malyshev''s Formula
Matematičeskie zametki, Tome 75 (2004) no. 5, pp. 652-662.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a complex matrix of order $n$ with $n\ge3$. We associate with $A$ the $(3n\times 3n)$ matrix $$ Q(\gamma)=\begin{pmatrix} A\gamma_1I_n\gamma_3I_n \\0\gamma_2I_n \\00 \end{pmatrix}, $$ where $\gamma_1,\gamma_2,\gamma_3$ are scalar parameters and $\gamma=(\gamma_1,\gamma_2,\gamma_3)$. Let $\sigma_i$, $1\le i\le3n$, be the singular values of $Q(\gamma)$ in the decreasing order. We prove that, for a normal matrix $A$, its 2-norm distance from the set $\mathscr M$ of matrices with a zero eigenvalue of multiplicity at least 3 is equal to $$ \max_{\gamma_1,\gamma_2\ge0,\gamma_3\in\mathbb C} \sigma_{3n-2}(Q(\gamma)). $$ This fact is a refinement (for normal matrices) of Malyshev"s formula for the 2-norm distance from an arbitrary $(n\times n)$ matrix $A$ to the set of $(n\times n)$ matrices with a multiple zero eigenvalue.
@article{MZM_2004_75_5_a1,
     author = {Kh. D. Ikramov and A. M. Nazari},
     title = {Normal {Matrices} and an {Extension} of {Malyshev''s} {Formula}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {652--662},
     publisher = {mathdoc},
     volume = {75},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a1/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
AU  - A. M. Nazari
TI  - Normal Matrices and an Extension of Malyshev''s Formula
JO  - Matematičeskie zametki
PY  - 2004
SP  - 652
EP  - 662
VL  - 75
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a1/
LA  - ru
ID  - MZM_2004_75_5_a1
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%A A. M. Nazari
%T Normal Matrices and an Extension of Malyshev''s Formula
%J Matematičeskie zametki
%D 2004
%P 652-662
%V 75
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a1/
%G ru
%F MZM_2004_75_5_a1
Kh. D. Ikramov; A. M. Nazari. Normal Matrices and an Extension of Malyshev''s Formula. Matematičeskie zametki, Tome 75 (2004) no. 5, pp. 652-662. http://geodesic.mathdoc.fr/item/MZM_2004_75_5_a1/

[1] Malyshev A. N., “A formula for the $2$-norm distance from a matrix to the set of matrices with multiple eigenvalues”, Numer. Math., 83 (1999), 443–454 | DOI | MR | Zbl

[2] Ikramov Kh. D., Nazari A. M., “O rasstoyanii do blizhaishei matritsy s troinym sobstvennym znacheniem nul”, Matem. zametki, 73:4 (2003), 545–555 | MR | Zbl