Universal Models For Real Submanifolds
Matematičeskie zametki, Tome 75 (2004) no. 4, pp. 507-522.

Voir la notice de l'article provenant de la source Math-Net.Ru

In previous papers by the present author, a machinery for calculating automorphisms, constructing invariants, and classifying real submanifolds of a complex manifold was developed. The main step in this machinery is the construction of a “nice” model surface. The nice model surface can be treated as an analog of the osculating paraboloid in classical differential geometry. Model surfaces suggested earlier possess a complete list of the desired properties only if some upper estimate for the codimension of the submanifold is satisfied. If this estimate fails, then the surfaces lose the universality property (that is, the ability to touch any germ in an appropriate way), which restricts their applicability. In the present paper, we get rid of this restriction: for an arbitrary type $(n,K)$ (where $n$ is the dimension of the complex tangent plane, and $K$ is the real codimension), we construct a nice model surface. In particular, we solve the problem of constructing a nondegenerate germ of a real analytic submanifold of a complex manifold of arbitrary given type $(n,K)$ with the richest possible group of holomorphic automorphisms in the given class.
@article{MZM_2004_75_4_a2,
     author = {V. K. Beloshapka},
     title = {Universal {Models} {For} {Real} {Submanifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {507--522},
     publisher = {mathdoc},
     volume = {75},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a2/}
}
TY  - JOUR
AU  - V. K. Beloshapka
TI  - Universal Models For Real Submanifolds
JO  - Matematičeskie zametki
PY  - 2004
SP  - 507
EP  - 522
VL  - 75
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a2/
LA  - ru
ID  - MZM_2004_75_4_a2
ER  - 
%0 Journal Article
%A V. K. Beloshapka
%T Universal Models For Real Submanifolds
%J Matematičeskie zametki
%D 2004
%P 507-522
%V 75
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a2/
%G ru
%F MZM_2004_75_4_a2
V. K. Beloshapka. Universal Models For Real Submanifolds. Matematičeskie zametki, Tome 75 (2004) no. 4, pp. 507-522. http://geodesic.mathdoc.fr/item/MZM_2004_75_4_a2/

[1] Burns D., Shnider S., Wells R. O., “Deformation of strictly pseudoconvex domains”, Invent. Math., 46:3 (1978), 199–217 | DOI | MR

[2] Cartan E., “Sur la geometrie pseudoconforme des hypersurfaces de deux variables complexes”, Ann. Math. Pura Appl., 11:4 (1932), 17–90 ; Oeuvres II, V. 2, 1231–1304 | MR | Zbl

[3] Chern S. S., Moser J. K., “Real hypersurfaces in complex manifold”, Acta Math., 133:3–4 (1974), 219–271 | DOI | MR

[4] Beloshapka V. K., “Veschestvennye podmnogoobraziya kompleksnogo prostranstva ikh polinomialnye modeli, avtomorfizmy i problemy klassifikatsii”, UMN, 57:1 (2002), 3–44 | MR | Zbl

[5] Tanaka N., “On the pseudo-conformal geometry of hypersurfaces of the space of $n$ complex variables”, J. Math. Soc. Japan, 14 (1962), 397–429 | MR | Zbl

[6] Beloshapka V. K., “O golomorfnykh preobrazovaniyakh kvadriki”, Matem. sb., 182:2 (1991), 203–219 | Zbl

[7] Beloshapka V. K., “CR-varieties of the type $(1,2)$ as varieties of “super-high” codimension”, Russian J. Math. Phys., 5:2 (1998), 399–404 | MR

[8] Shananina E. N., “Modeli CR-mnogoobrazii tipa $(1,k)$ pri $3\le k\le7$ i ikh avtomorfizmy”, Matem. zametki, 67:3 (2000), 452–459 | MR | Zbl

[9] Beloshapka V. K., “Kubicheskaya model veschestvennogo mnogoobraziya”, Matem. zametki, 70:4 (2001), 503–519 | MR | Zbl

[10] Beloshapka V. K., “Polinomialnye modeli veschestvennykh mnogoobrazii”, Izv. RAN. Ser. matem., 65:4 (2001), 3–20 | MR | Zbl

[11] Beloshapka V. K., “Kvaziperiodicheskaya sistema polinomialnykh modelei CR-mnogoobrazii”, Tr. MIAN, 235, Nauka, M., 2001, 7–35 | MR | Zbl

[12] Shananina E. N., “Polinomialnye modeli stepeni $5$ i algebry ikh avtomorfizmov”, Matem. zametki, 2003 (to appear)

[13] Kohn J. J., “Boundary behavior of $\bar\partial$ on weakly pseudoconvex manifolds of dimension two”, J. Differential Geom., 6 (1972), 553–542 | MR

[14] Bloom T., Graham I., “On type conditions for generic real submanifolds in $\mathbb C^n$”, Invent. Math., 40 (1977), 217–243 | DOI | MR

[15] Beloshapka V. K., “Funktsii, plyurigarmonicheskie na mnogoobrazii”, Izv. AN SSSR. Ser. matem., 12:3 (1978), 439–447 | Zbl

[16] Tumanov A. E., “Prodolzhenie CR-funktsii s mnogoobrazii konechnogo tipa v klin”, Matem. sb., 136 (1988), 129–140

[17] Baouendi M. S., Huang X., Rothschild L. P., “Regularity of CR-mappings between algebraic hypersurfaces”, Invent. Math., 125 (1996), 13–36 | DOI | MR | Zbl

[18] Baouendi M. S., Ebenfelt P., Rothschild L. P., Real Submanifolds in Complex Space and Their Mappings, Princeton Math. Ser., 47, Princeton Univ. Press, Princeton, NJ, 1999 | MR

[19] Beloshapka V. K., “Geometricheskie invarianty CR-mnogoobrazii”, Matem. zametki, 55:5 (1994), 3–12 | MR | Zbl

[20] Garrity T., Mizner R., “Invariants of vector-valued and sesquilinear forms”, Linear Algebra Appl., 218 (1995), 225–237 | DOI | MR | Zbl

[21] Beloshapka V. K., “Invarianty CR-mnogoobrazii, svyazannye s kasatelnoi kvadrikoi”, Matem. zametki, 59:1 (1996), 42–52 | MR | Zbl

[22] Beloshapka V. K., “Lokalnye invarianty i zaprety na otobrazheniya CR-mnogoobrazii”, Matem. zametki, 60:4 (1996), 588–592 | MR | Zbl

[23] Zaitsev D., “Germs of local automorphisms of real-analytic CR structures and analytic dependence on k-jets”, Math. Res. Lett., 4 (1997), 1–20 | MR

[24] Tumanov A. E., “Konechnomernost gruppy CR-avtomorfizmov standartnogo CR-mnogoobraziya i sobstvennye golomorfnye otobrazheniya oblastei Zigelya”, Izv. AN SSSR, 52:3 (1988), 651–659 | MR | Zbl

[25] Tanaka N., “On generalized graded Lie algebras and geometric structures, I”, J. Math. Soc. Japan, 19:2 (1967), 215–254 | MR | Zbl

[26] Naruki I., “Holomorphic extension problem for standart real submanifolds of second kind”, Publ. Res. Inst. Math. Kyoto Univ., 6:1 (1970), 113–187 | DOI | MR | Zbl

[27] Medori C., Nacinovich M., “Maximally homogeneous nondegenerate CR-manifolds”, Adv. Geom., 1 (2001), 89–95 | DOI | MR | Zbl

[28] Tanaka N., “Graded Lie algebras and geometric structures”, Proc. US-Japan Seminar in Differential Geometry (Kyoto, 1965), Nippon Hyoronsha, Tokyo, 1965, 147–150