Density of Polynomial Elements in Invariant Subspaces of Entire Functions of Exponential Type
Matematičeskie zametki, Tome 75 (2004) no. 3, pp. 421-424.

Voir la notice de l'article provenant de la source Math-Net.Ru

Translation invariant subspaces in the space of entire functions of exponential type of several complex variables are considered and conditions are presented under which the set of exponential polynomials is dense in such a space. In particular, necessary and sufficient conditions for the polynomial elements to be dense are obtained.
@article{MZM_2004_75_3_a8,
     author = {V. M. Trutnev},
     title = {Density of {Polynomial} {Elements} in {Invariant} {Subspaces} of {Entire} {Functions} of {Exponential} {Type}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {421--424},
     publisher = {mathdoc},
     volume = {75},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a8/}
}
TY  - JOUR
AU  - V. M. Trutnev
TI  - Density of Polynomial Elements in Invariant Subspaces of Entire Functions of Exponential Type
JO  - Matematičeskie zametki
PY  - 2004
SP  - 421
EP  - 424
VL  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a8/
LA  - ru
ID  - MZM_2004_75_3_a8
ER  - 
%0 Journal Article
%A V. M. Trutnev
%T Density of Polynomial Elements in Invariant Subspaces of Entire Functions of Exponential Type
%J Matematičeskie zametki
%D 2004
%P 421-424
%V 75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a8/
%G ru
%F MZM_2004_75_3_a8
V. M. Trutnev. Density of Polynomial Elements in Invariant Subspaces of Entire Functions of Exponential Type. Matematičeskie zametki, Tome 75 (2004) no. 3, pp. 421-424. http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a8/

[1] Malgrange B., “Existence et appoximation des solutons des équations aux derivées partielles et des équations de convolution”, Ann. Inst. Fourier, Grenoble, 6 (1955–1956), 1–271 | MR

[2] Palamodov V. P., Lineinye differentsialnye operatory s postoyannymi koeffitsientami, Nauka, M., 1967 | MR

[3] Krivosheev A. S., Napalkov V. V., “Kompleksnyi analiz i operatory svertki”, UMN, 47:6 (1992), 3–58 | MR | Zbl

[4] Berenstein K., Struppa D., “Kompleksnyi analiz i uravneniya v svertkakh”, Itogi nauki i tekhnini. Sovr. probl. matem. Fundament. napravleniya, 54, VINITI, M., 1989, 5–111 | MR

[5] Filippov V. N., “Spektralnyi sintez v nekotorykh prostranstvakh tselykh funktsii eksponentsialnogo tipa”, Matem. zametki, 30:4 (1981), 527–534 | MR | Zbl

[6] Gurevich D. I., “Kontrprimery k probleme L. Shvartsa”, Funktsion. analiz i ego prilozh., 9:2 (1975), 29–35 | MR | Zbl

[7] Napalkov V. V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR

[8] Napalkov V. V., “Podprostranstva tselykh funktsii eksponentsialnogo tipa, invariantnye otnositelno sdviga”, Sib. matem. zh., 15:2 (1973), 427–436 | MR

[9] Foster O., “Primärzerlegung in Steinschen Algebren”, Math. Ann., 154 (1964), 307–329 | DOI | MR

[10] Yum-Tong Siu, “Noether–Lasker decomposition of coherent analitic subsheaves”, Tran. Amer. Math. Soc., 135 (1969), 375–385 | DOI | MR | Zbl