On the Eigenvalues of Finitely Perturbed Laplace Operators in Infinite Cylindrical Domains
Matematičeskie zametki, Tome 75 (2004) no. 3, pp. 360-371.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, sufficient conditions for the existence of eigenvalues of a finitely perturbed Laplace operator in an infinite cylindrical domain and their asymptotics in the small parameter are given. Similar questions for tubes, i.e., deformed cylinders, are also considered.
@article{MZM_2004_75_3_a3,
     author = {V. V. Grushin},
     title = {On the {Eigenvalues} of {Finitely} {Perturbed} {Laplace} {Operators} in {Infinite} {Cylindrical} {Domains}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {360--371},
     publisher = {mathdoc},
     volume = {75},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a3/}
}
TY  - JOUR
AU  - V. V. Grushin
TI  - On the Eigenvalues of Finitely Perturbed Laplace Operators in Infinite Cylindrical Domains
JO  - Matematičeskie zametki
PY  - 2004
SP  - 360
EP  - 371
VL  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a3/
LA  - ru
ID  - MZM_2004_75_3_a3
ER  - 
%0 Journal Article
%A V. V. Grushin
%T On the Eigenvalues of Finitely Perturbed Laplace Operators in Infinite Cylindrical Domains
%J Matematičeskie zametki
%D 2004
%P 360-371
%V 75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a3/
%G ru
%F MZM_2004_75_3_a3
V. V. Grushin. On the Eigenvalues of Finitely Perturbed Laplace Operators in Infinite Cylindrical Domains. Matematičeskie zametki, Tome 75 (2004) no. 3, pp. 360-371. http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a3/

[1] Hörmander L., Linear Partial Differential Operators, Springer-Verlag, Berlin, 1963 ; Khermander L., Lineinye differentsialnye operatory, Mir, M., 1965 | MR

[2] Belov V. V., Dobrokhotov S. Yu., Sinitsyn S. O., “Asimptoticheskie resheniya uravneniya Shrëdingera v tonkikh trubkakh”, Tr. in-ta matem. i mekh. UrO RAN, 9:1 (2003), 15–25 | MR | Zbl

[3] Duclos P., Exner P., “Curvature-induced bound states in quantum waveguides in two and three dimensions”, Rev. Math. Phys., 7 (1995), 73–102 | DOI | MR | Zbl

[4] Entin M. V., Magarill L. I., “Electrons in twisted quantum wire”, Phys. Rev. B, 66 (2002), 205308-1–205308-5 | DOI

[5] Exner P., “Bound states in curved quantum waveguides”, J. Math. Phys., 30 (1989), 2574–2580 | DOI | MR | Zbl

[6] Exner P., “Bound states in quantum waveguides of a slowly decaying curvature”, J. Math. Phys., 34 (1993), 23–28 | DOI | MR | Zbl

[7] Exner P., “A quantum pipette”, J. Math. Phys. A, 28 (1995), 5323–5330 | DOI | MR | Zbl

[8] Maslov V. P., “Asimptotika sobstvennykh funktsii uravneniya $\Delta u+k^2 u=0$ s kraevymi usloviyami na ekvidistantnykh krivykh i rasseyanie elektromagnitnykh voln v volnovode”, Dokl. AN SSSR, 123:4 (1958), 631–633 | MR | Zbl

[9] Maslov V. P., “Mathematical Aspects of Integral Optics”, Russ. J. Math. Phys., 8 (2001), 83–180 | MR

[10] Maslov V. P., Vorobev E. M., “Ob odnomodovykh otkrytykh rezonatorakh”, Dokl. AN SSSR, 179:3 (1968), 558–561

[11] Reed M., Simon B., Methods of Modern Mathematical Physics. V. 4. Analysis of Operators, Academic Press, New York, 1978 ; Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR | Zbl | MR

[12] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi i uglovymi tochkami”, Tr. MMO, 16, URSS, M., 1967, 207–318

[13] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (117) (1964), 53–161 | MR | Zbl

[14] Maurin K., Metodi przestrzeni Hilberta, Warsawa, 1959; Moren K., Metody gilbertova prostranstva, Mir, M., 1965 | MR