On the Eigenvalues of Finitely Perturbed Laplace Operators in Infinite Cylindrical Domains
Matematičeskie zametki, Tome 75 (2004) no. 3, pp. 360-371
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, sufficient conditions for the existence of eigenvalues of a finitely perturbed Laplace operator in an infinite cylindrical domain and their asymptotics in the small parameter are given. Similar questions for tubes, i.e., deformed cylinders, are also considered.
@article{MZM_2004_75_3_a3,
author = {V. V. Grushin},
title = {On the {Eigenvalues} of {Finitely} {Perturbed} {Laplace} {Operators} in {Infinite} {Cylindrical} {Domains}},
journal = {Matemati\v{c}eskie zametki},
pages = {360--371},
publisher = {mathdoc},
volume = {75},
number = {3},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a3/}
}
V. V. Grushin. On the Eigenvalues of Finitely Perturbed Laplace Operators in Infinite Cylindrical Domains. Matematičeskie zametki, Tome 75 (2004) no. 3, pp. 360-371. http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a3/