Minimality of Convergence in Measure Topologies on Finite von Neumann Algebras
Matematičeskie zametki, Tome 75 (2004) no. 3, pp. 342-349

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the natural embedding of the metric ideal space on a finite von Neumann algebra ${\mathscr M}$ into the $*$-algebra of measurable operators $\widetilde {\mathscr M}$ endowed with the topology of convergence in measure is continuous. Using this fact, we prove that the topology of convergence in measure is a minimal one among all metrizable topologies consistent with the ring structure on $\widetilde {\mathscr M}$.
@article{MZM_2004_75_3_a1,
     author = {A. M. Bikchentaev},
     title = {Minimality of {Convergence} in {Measure} {Topologies} on {Finite} von {Neumann} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {342--349},
     publisher = {mathdoc},
     volume = {75},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a1/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - Minimality of Convergence in Measure Topologies on Finite von Neumann Algebras
JO  - Matematičeskie zametki
PY  - 2004
SP  - 342
EP  - 349
VL  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a1/
LA  - ru
ID  - MZM_2004_75_3_a1
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T Minimality of Convergence in Measure Topologies on Finite von Neumann Algebras
%J Matematičeskie zametki
%D 2004
%P 342-349
%V 75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a1/
%G ru
%F MZM_2004_75_3_a1
A. M. Bikchentaev. Minimality of Convergence in Measure Topologies on Finite von Neumann Algebras. Matematičeskie zametki, Tome 75 (2004) no. 3, pp. 342-349. http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a1/