Bifurcation of the Point of Equilibrium in Systems with Zero Roots of the Characteristic Equation
Matematičeskie zametki, Tome 75 (2004) no. 3, pp. 323-341.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the following real autonomous system of $2d$ differential equations with a small positive parameter $\varepsilon $: $$ \dot x_i=x_{i+d}+X_i^{(n+1)}(x,\varepsilon ),\qquad \dot x_{i+d}=-x_i^{2n-1}+X_{i+d}^{(2n)}(x,\varepsilon ),\qquad i=1,\dots,d, $$ where $d\ge 2$, $n\ge 2$, and the $X_j^{(k)}$ are continuous functions continuously differentiable with respect to $x$ and $\varepsilon $ the required number of times in the neighborhood of zero; their expansion begins with order $k$ if we assume that the variables $x_i$ are of first order of smallness, $\varepsilon $ is of second order, and the variables $x_{i+d}$ are of order $n$. We write out a finite number of explicit conditions on the coefficients of the lower terms in the expansion of the right-hand side of this system guaranteeing that for any sufficiently small $\varepsilon > 0$ the system has one or several $d$-dimensional invariant tori with infinitely small frequencies of motions on them.
@article{MZM_2004_75_3_a0,
     author = {V. V. Basov},
     title = {Bifurcation of the {Point} of {Equilibrium} in {Systems} with {Zero} {Roots} of the {Characteristic} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--341},
     publisher = {mathdoc},
     volume = {75},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a0/}
}
TY  - JOUR
AU  - V. V. Basov
TI  - Bifurcation of the Point of Equilibrium in Systems with Zero Roots of the Characteristic Equation
JO  - Matematičeskie zametki
PY  - 2004
SP  - 323
EP  - 341
VL  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a0/
LA  - ru
ID  - MZM_2004_75_3_a0
ER  - 
%0 Journal Article
%A V. V. Basov
%T Bifurcation of the Point of Equilibrium in Systems with Zero Roots of the Characteristic Equation
%J Matematičeskie zametki
%D 2004
%P 323-341
%V 75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a0/
%G ru
%F MZM_2004_75_3_a0
V. V. Basov. Bifurcation of the Point of Equilibrium in Systems with Zero Roots of the Characteristic Equation. Matematičeskie zametki, Tome 75 (2004) no. 3, pp. 323-341. http://geodesic.mathdoc.fr/item/MZM_2004_75_3_a0/

[1] Bibikov Yu. N., Mnogochastotnye nelineinye kolebaniya i ikh bifurkatsii, Izd-vo Leningradskogo un-ta, L., 1991 | MR

[2] Lyapunov A. M., “Issledovanie odnogo iz osobennykh sluchaev zadachi ob ustoichivosti dvizheniya”, Sobr. soch., T. 2, Izd-vo AN SSSR, M.–L., 1956, 272–331

[3] Hale J. K., “Integral manifolds of perturbed differential systems”, Ann. of Maths., 73:3 (1961), 496–531 | DOI | MR | Zbl

[4] Basov V. V., “Bifurkatsiya invariantnogo tora korazmernosti edinitsa”, Matem. zametki, 69:1 (2001), 3–17 | MR | Zbl

[5] Basov V. V., “Ob ustoichivosti polozheniya ravnovesiya v kriticheskom sluchae dvukh chisto-mnimykh i dvukh nulevykh kornei kharakteristicheskogo uravneniya”, Differents. uravneniya, 35:10 (1999), 1313–1318 | MR | Zbl

[6] Basov V. V., Bibikov Yu. N., “Bifurkatsiya polozheniya ravnovesiya sistemy differentsialnykh uravnenii v kriticheskom sluchae dvukh chisto mnimykh i dvukh nulevykh kornei kharakteristicheskogo uravneniya, I”, Differents. uravneniya, 36:1 (2000), 26–32 | MR | Zbl

[7] Basov V. V., “Bifurkatsiya polozheniya ravnovesiya sistemy differentsialnykh uravnenii v kriticheskom sluchae dvukh chisto mnimykh i dvukh nulevykh kornei kharakteristicheskogo uravneniya, II”, Differents. uravneniya, 37:4 (2001), 435–438 | MR | Zbl

[8] Basov V. V., “Bifurkatsiya polozheniya ravnovesiya sistemy differentsialnykh uravnenii v kriticheskom sluchae dvukh par nulevykh kornei kharakteristicheskogo uravneniya”, Tr. MIRAN, 236, Nauka, M., 2002, 45–60 | MR | Zbl