Lambert Cubes Generating Discrete Reflection Groups
Matematičeskie zametki, Tome 75 (2004) no. 2, pp. 277-286.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Lambert cube $Q(\alpha,\beta, \gamma)$ is a combinatorial cube with dihedral angles $\alpha$, $\beta$, and $\gamma$ assigned to the three mutually noncomplanar edges and right angles at the remaining edges. In this paper, we classify the Lambert cubes in $S^3$, $\mathbb{E}^3$ and $\mathbb{H}^3$ such that the group $G_Q$ generated by the reflections with respect to the faces of a cube $Q$ is discrete.
@article{MZM_2004_75_2_a10,
     author = {A. A. Felikson},
     title = {Lambert {Cubes} {Generating} {Discrete} {Reflection} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {277--286},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a10/}
}
TY  - JOUR
AU  - A. A. Felikson
TI  - Lambert Cubes Generating Discrete Reflection Groups
JO  - Matematičeskie zametki
PY  - 2004
SP  - 277
EP  - 286
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a10/
LA  - ru
ID  - MZM_2004_75_2_a10
ER  - 
%0 Journal Article
%A A. A. Felikson
%T Lambert Cubes Generating Discrete Reflection Groups
%J Matematičeskie zametki
%D 2004
%P 277-286
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a10/
%G ru
%F MZM_2004_75_2_a10
A. A. Felikson. Lambert Cubes Generating Discrete Reflection Groups. Matematičeskie zametki, Tome 75 (2004) no. 2, pp. 277-286. http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a10/

[1] Schwarz H. A., “Über diejenige Fälle in welchen die Gaussische Reihe eine algebraische Function ihres elementes destellt”, Crelle's J., 75 (1873), 292–335

[2] Klimenko E., Sakuma M., “Two-generator discrete subgroups of $\mathrm{Isom}(H^2)$ containing orientation-reversing elements”, Geom. Dedicata, 72 (1998), 247–282 | DOI | MR | Zbl

[3] Felikson A., “Coxeter decompositions of hyperbolic polygons”, Europ. J. Combinatorics, 19 (1998), 801–817 | DOI | MR | Zbl

[4] Felikson A., Coxeter decompositions of hyperbolic pyramids and triangular prisms, math.MG/0212195

[5] Felikson A., “Koksterovskie razbieniya giperbolicheskikh simpleksov”, Matem. sb., 193:12 (2002), 134–156 | MR | Zbl

[6] Coxeter H. S. M., “Finite groups generated by reflections, and their subgroups generated by reflections”, Proc. Cambridge Philos. Soc., 30 (1934), 466–482 | DOI

[7] Andreev E. M., “O vypuklykh mnogogrannikakh v prostranstvakh Lobachevskogo”, Matem. sb., 81:3 (1970), 445–478 | MR | Zbl

[8] Andreev E. M., “O peresechenii ploskostei granei mnogogrannikov s ostrymi uglami”, Matem. zametki, 8:4 (1970), 521–527 | MR | Zbl