Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2004_75_2_a10, author = {A. A. Felikson}, title = {Lambert {Cubes} {Generating} {Discrete} {Reflection} {Groups}}, journal = {Matemati\v{c}eskie zametki}, pages = {277--286}, publisher = {mathdoc}, volume = {75}, number = {2}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a10/} }
A. A. Felikson. Lambert Cubes Generating Discrete Reflection Groups. Matematičeskie zametki, Tome 75 (2004) no. 2, pp. 277-286. http://geodesic.mathdoc.fr/item/MZM_2004_75_2_a10/
[1] Schwarz H. A., “Über diejenige Fälle in welchen die Gaussische Reihe eine algebraische Function ihres elementes destellt”, Crelle's J., 75 (1873), 292–335
[2] Klimenko E., Sakuma M., “Two-generator discrete subgroups of $\mathrm{Isom}(H^2)$ containing orientation-reversing elements”, Geom. Dedicata, 72 (1998), 247–282 | DOI | MR | Zbl
[3] Felikson A., “Coxeter decompositions of hyperbolic polygons”, Europ. J. Combinatorics, 19 (1998), 801–817 | DOI | MR | Zbl
[4] Felikson A., Coxeter decompositions of hyperbolic pyramids and triangular prisms, math.MG/0212195
[5] Felikson A., “Koksterovskie razbieniya giperbolicheskikh simpleksov”, Matem. sb., 193:12 (2002), 134–156 | MR | Zbl
[6] Coxeter H. S. M., “Finite groups generated by reflections, and their subgroups generated by reflections”, Proc. Cambridge Philos. Soc., 30 (1934), 466–482 | DOI
[7] Andreev E. M., “O vypuklykh mnogogrannikakh v prostranstvakh Lobachevskogo”, Matem. sb., 81:3 (1970), 445–478 | MR | Zbl
[8] Andreev E. M., “O peresechenii ploskostei granei mnogogrannikov s ostrymi uglami”, Matem. zametki, 8:4 (1970), 521–527 | MR | Zbl