On the Inverses of Brownian and Brownian-Like Matrices
Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 89-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

In several papers by F. Valvi, sufficient conditions are given for Brownian and Brownian-like matrices to have Hessenberg inverses. We interpret these conditions from the viewpoint of familiar facts related to matrices of small triangular rank. This allows us to formulate more general assertions on the Hessenberg property of the inverse. Moreover, we explicitly find the structure of the inverse of a Brownian matrix under a certain natural irreducibility condition. This structure is similar to the well-known structure of the inverse of an irreducible tridiagonal matrix. Furthermore, we show that the parameters defining the inverse of an ($n\times n$) Brownian matrix can be calculated in $O(n)$ arithmetic operations.
@article{MZM_2004_75_1_a7,
     author = {Kh. D. Ikramov and A. A. Chesnokov},
     title = {On the {Inverses} of {Brownian} and {Brownian-Like} {Matrices}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {89--99},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a7/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
AU  - A. A. Chesnokov
TI  - On the Inverses of Brownian and Brownian-Like Matrices
JO  - Matematičeskie zametki
PY  - 2004
SP  - 89
EP  - 99
VL  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a7/
LA  - ru
ID  - MZM_2004_75_1_a7
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%A A. A. Chesnokov
%T On the Inverses of Brownian and Brownian-Like Matrices
%J Matematičeskie zametki
%D 2004
%P 89-99
%V 75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a7/
%G ru
%F MZM_2004_75_1_a7
Kh. D. Ikramov; A. A. Chesnokov. On the Inverses of Brownian and Brownian-Like Matrices. Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 89-99. http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a7/

[1] Gregory R. T., Karney D. L., A collection of matrices for testing computational algorithms, John Wiley, 1969 | MR | Zbl

[2] Valvi F., “Explicit presentation of the inverses of some types of matrices”, J. Inst. Maths. Applics., 19 (1977), 107–117 | DOI | MR | Zbl

[3] Valvi F. N., Geroyannis V. S., “Analytic inverses and determinants for a class of matrices”, IMA J. Numer. Analysis, 7 (1987), 123–128 | DOI | MR | Zbl

[4] Valvi F. N., “The Hadamard product of two Brownian matrices: analytic inverse and determinant”, J. Austral. Math. Soc. Ser. B, 36 (1995), 493–497 | DOI | MR | Zbl

[5] Èidelman Yu. S., Gohberg I., “On a new class of structured matrices”, Integral Equations Operator Theory, 34:3 (1999), 293–324 | DOI | MR | Zbl

[6] Tyrtyshnikov E. E., “Mosaic ranks and skeletons matrices”, Numerical analysis and its applications (Rousse, 1996), Lecture Notes in Computer Science, 1196, 1997, 505–516 | MR

[7] Fiedler M., Markham T. L., “Rank-preserving diagonal completions of a matrix”, Linear Algebra Appl., 85 (1987), 49–56 | DOI | MR | Zbl

[8] Fiedler M., “Structure ranks of matrices”, Linear Algebra Appl., 179 (1993), 119–127 | DOI | MR | Zbl

[9] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1990 | MR

[10] Elsner L., “Some observations on inverses of band matrices and low-rank perturbations of triangular matrices”, Acta Technica Acad. Sci. Hung., 108:1–2 (1997–99), 41–48

[11] McDonald J. J., Nabben R., Neumann M., Schneider H., Tsatsomeros M., “Inverse tridiagonal Z-matrices”, Linear and Multilinear Algebra, 45 (1998), 75–97 | DOI | MR | Zbl

[12] Asplund E., “Inverses of matrices $\{a_{ij}\}$ which satisfy $a_{ij}=0$ for $j>i+p$”, Mathematica Scandinavica, 7 (1959), 57–60 | MR | Zbl

[13] Gover M. J. C., Barnett S., “Brownian matrices: properties and extensions”, Int. J. Syst. Sci., 17:2 (1986), 381–386 | DOI | Zbl

[14] Krishna H., Morgera S. D., “Fast $O(n)$ complexity algorithms for diagonal innovation matrices”, IEEE Trans. Acoust., Speech, Signal Process, 32 (1984), 1189–1193 | DOI