$A$-Systems, Independent Functions, and Sets Bounded in Spaces of Measurable Functions
Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 115-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $U\subset L_\circ\bigl([0,1],\mathscr M,\mathbf m\bigr)$ be a set of Lebesgue measurable functions. Suppose also that two seminormed spaces of real number sequences are given: $\mathscr A$ and $\mathscr B$. We study $(\mathscr A,\mathscr B)$ -sets $U$ defined by the classes $\mathscr A$ and $\mathscr B$ as follows: $$ \begin{gathered} \forall a=(a_n)\in\mathscr {A},\quad \forall(f_n(t))\in u^{\mathbb{N}}\quad\text{(or for sequences similar to,} \\ \quad (f_n(t)) \quad\exists E=E(a)\subset[0,1],\quad \mathbf m E=1\quad\text{such that} \\ \{a_nf_n(t)\mathbf{1}_E(t)\}\in\mathscr B,\qquad t\in[0,1]. \end{gathered} $$ We consider three versions of the definition of $(\mathscr A,\mathscr B)$ -sets, one of which is based on functions independent in the probability sense. The case $\mathscr B=l_\infty$ is studied in detail. It is shown that $(\mathscr A,l_\infty)$ -independent sets are sets bounded or order bounded in some well-known function spaces ($L_p$, $L_{p,q}$, etc.) constructed with respect to the Lebesgue measure. A characterization of such sets in terms of seminormed spaces of number sequences is given. The $(l_1,c_\circ)$- and $(\mathscr A,l_1)$ -sets were studied by E. M. Nikishin.
@article{MZM_2004_75_1_a10,
     author = {S. Ya. Novikov},
     title = {$A${-Systems,} {Independent} {Functions,} and {Sets} {Bounded} in {Spaces} of {Measurable} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {115--134},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a10/}
}
TY  - JOUR
AU  - S. Ya. Novikov
TI  - $A$-Systems, Independent Functions, and Sets Bounded in Spaces of Measurable Functions
JO  - Matematičeskie zametki
PY  - 2004
SP  - 115
EP  - 134
VL  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a10/
LA  - ru
ID  - MZM_2004_75_1_a10
ER  - 
%0 Journal Article
%A S. Ya. Novikov
%T $A$-Systems, Independent Functions, and Sets Bounded in Spaces of Measurable Functions
%J Matematičeskie zametki
%D 2004
%P 115-134
%V 75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a10/
%G ru
%F MZM_2004_75_1_a10
S. Ya. Novikov. $A$-Systems, Independent Functions, and Sets Bounded in Spaces of Measurable Functions. Matematičeskie zametki, Tome 75 (2004) no. 1, pp. 115-134. http://geodesic.mathdoc.fr/item/MZM_2004_75_1_a10/

[1] Nikishin E. M., “Rezonansnye teoremy i nadlineinye operatory”, UMN, 25:6 (1970), 129–191 | MR | Zbl

[2] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, AFTs, M., 1999 | MR

[3] Pisier G., “Factorisation of Operators through $L_{p,\infty}$ and $L_{p,1}$”, Math. Ann., 276 (1986), 105–136 | DOI | MR | Zbl

[4] Makarov B. M., “$p$-absolyutno summiruyuschie operatory i nekotorye ikh prilozheniya”, Algebra i analiz, 3:2 (1991), 1–76

[5] Kislyakov S. V., “Absolyutno summiruyuschie operatory na disk-algebre”, Algebra i analiz, 3:4 (1991), 1–77 | MR

[6] Nikishin E. M., “Rezonansnaya teorema i ryady po sobstvennym funktsiyam operatora Laplasa”, Izv. AN SSSR. Ser. matem., 36:4 (1972), 795–813 | MR | Zbl

[7] Berg I., Lefstrem I., Interpolyatsionnye prostranstva, Mir, M., 1980 | MR

[8] Pich A., Operatornye idealy, Mir, M., 1982 | MR

[9] Partasarati K., Vvedenie v teoriyu veroyatnostei i teoriyu mery, Mir, M., 1983 | MR

[10] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR

[11] Johnson W. B., Schechtman G., “Sums of independent random variables in rearrangement invariant function spaces”, Ann. of Probability, 17:2 (1989), 789–808 | DOI | MR | Zbl

[12] Carothers N. L., Dilworth S. J., “Inequalities for sums of independent random variables”, Proc. of Amer. Math. Soc., 104:1 (1988), 221–226 | DOI | MR | Zbl

[13] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[14] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[15] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, V. I, Springer, Berlin, 1977 | MR

[16] Ulyanov P. L., “Predstavlenie funktsii ryadami i klassy $\varphi(L)$”, UMN, 27:2 (1972), 3–52 | MR | Zbl

[17] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, M., 1958 | MR

[18] Hunt R. A., “On $L(p,q)$ spaces”, L'Enseignement Math., 12:4 (1966), 249–276 | MR | Zbl

[19] Novikov S. Ya., Shteinberg A. M., “Prostranstva Lorentsa i ogranichennost pochti navernoe ...”, Sib. matem. zh., 30:2 (1989), 138–144 | MR | Zbl