A Geometric Bijection for $xy$-Convex Curves and Convex Polyominoes
Matematičeskie zametki, Tome 74 (2003) no. 6, pp. 866-876.

Voir la notice de l'article provenant de la source Math-Net.Ru

A connected subset of ${\mathbb R}^2$ consisting of unit squares with integral vertices is called a convex polyomino or is simply said to be $xy$-convex if it intersects any horizontal or vertical line exactly in one closed interval. In this paper, a geometric representation for xy-convex sets is described, allowing us to obtain, by elementary combinatorial methods, known formulas for the number of convex polyominoes contained in a rectangle of given size.
@article{MZM_2003_74_6_a6,
     author = {A. A. Panov},
     title = {A {Geometric} {Bijection} for $xy${-Convex} {Curves} and {Convex} {Polyominoes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {866--876},
     publisher = {mathdoc},
     volume = {74},
     number = {6},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a6/}
}
TY  - JOUR
AU  - A. A. Panov
TI  - A Geometric Bijection for $xy$-Convex Curves and Convex Polyominoes
JO  - Matematičeskie zametki
PY  - 2003
SP  - 866
EP  - 876
VL  - 74
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a6/
LA  - ru
ID  - MZM_2003_74_6_a6
ER  - 
%0 Journal Article
%A A. A. Panov
%T A Geometric Bijection for $xy$-Convex Curves and Convex Polyominoes
%J Matematičeskie zametki
%D 2003
%P 866-876
%V 74
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a6/
%G ru
%F MZM_2003_74_6_a6
A. A. Panov. A Geometric Bijection for $xy$-Convex Curves and Convex Polyominoes. Matematičeskie zametki, Tome 74 (2003) no. 6, pp. 866-876. http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a6/

[1] Sendov Bl., Khausdorfovye priblizheniya, Izd-vo BAN, Sofiya, 1979 | Zbl

[2] Panov A. A., “Vychislenie $\varepsilon$-entropii prostranstva nepreryvnykh funktsii s khausdorfovoi metrikoi”, Matem. zametki, 21:1 (1977), 39–50 | MR | Zbl

[3] Grekhem R., Knut D., Patashnik O., Konkretnaya matematika, Mir, M., 1998