A Geometric Bijection for $xy$-Convex Curves and Convex Polyominoes
Matematičeskie zametki, Tome 74 (2003) no. 6, pp. 866-876
Cet article a éte moissonné depuis la source Math-Net.Ru
A connected subset of ${\mathbb R}^2$ consisting of unit squares with integral vertices is called a convex polyomino or is simply said to be $xy$-convex if it intersects any horizontal or vertical line exactly in one closed interval. In this paper, a geometric representation for xy-convex sets is described, allowing us to obtain, by elementary combinatorial methods, known formulas for the number of convex polyominoes contained in a rectangle of given size.
@article{MZM_2003_74_6_a6,
author = {A. A. Panov},
title = {A {Geometric} {Bijection} for $xy${-Convex} {Curves} and {Convex} {Polyominoes}},
journal = {Matemati\v{c}eskie zametki},
pages = {866--876},
year = {2003},
volume = {74},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a6/}
}
A. A. Panov. A Geometric Bijection for $xy$-Convex Curves and Convex Polyominoes. Matematičeskie zametki, Tome 74 (2003) no. 6, pp. 866-876. http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a6/
[1] Sendov Bl., Khausdorfovye priblizheniya, Izd-vo BAN, Sofiya, 1979 | Zbl
[2] Panov A. A., “Vychislenie $\varepsilon$-entropii prostranstva nepreryvnykh funktsii s khausdorfovoi metrikoi”, Matem. zametki, 21:1 (1977), 39–50 | MR | Zbl
[3] Grekhem R., Knut D., Patashnik O., Konkretnaya matematika, Mir, M., 1998