Estimates of the Number of Eigenvalues of Self-Adjoint Operator Functions
Matematičeskie zametki, Tome 74 (2003) no. 6, pp. 838-847.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an operator function $F$ defined on the interval $[\sigma,\tau]\subset \mathbb R$ whose values are semibounded self-adjoint operators in the Hilbert space $\mathfrak H$. To the operator function $F$ we assign quantities $\mathscr N_F$ and $\nu_F(\lambda)$ that are, respectively, the number of eigenvalues of the operator function $F$ on the half-interval $[\sigma,\tau)$ and the number of negative eigenvalues of the operator $F(\lambda)$ for an arbitrary $\lambda\in[\sigma,\tau]$. We present conditions under which the estimate $\mathscr N_F\geqslant\nu_F(\tau)-\nu_F(\sigma)$ holds. We also establish conditions for the relation $\mathscr N_F=\nu_F(\tau)-\nu_F(\sigma)$ to hold. The results obtained are applied to ordinary differential operator functions on a finite interval.
@article{MZM_2003_74_6_a3,
     author = {A. A. Vladimirov},
     title = {Estimates of the {Number} of {Eigenvalues} of {Self-Adjoint} {Operator} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {838--847},
     publisher = {mathdoc},
     volume = {74},
     number = {6},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a3/}
}
TY  - JOUR
AU  - A. A. Vladimirov
TI  - Estimates of the Number of Eigenvalues of Self-Adjoint Operator Functions
JO  - Matematičeskie zametki
PY  - 2003
SP  - 838
EP  - 847
VL  - 74
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a3/
LA  - ru
ID  - MZM_2003_74_6_a3
ER  - 
%0 Journal Article
%A A. A. Vladimirov
%T Estimates of the Number of Eigenvalues of Self-Adjoint Operator Functions
%J Matematičeskie zametki
%D 2003
%P 838-847
%V 74
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a3/
%G ru
%F MZM_2003_74_6_a3
A. A. Vladimirov. Estimates of the Number of Eigenvalues of Self-Adjoint Operator Functions. Matematičeskie zametki, Tome 74 (2003) no. 6, pp. 838-847. http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a3/

[1] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979

[2] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | Zbl

[3] Glazman I. M., Pryamye metody kachestvennogo spektralnogo analiza singulyarnykh differentsialnykh operatorov, Fizmatgiz, M., 1963

[4] Rofe-Beketov F. S., Kholkin A. M., Spektralnyi analiz differentsialnykh operatorov. Svyaz spektralnykh i ostsillyatsionnykh svoistv, Mariupol, 2001

[5] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969

[6] Kamke E., “Neue Herleitung der Oszillationssätze für die linearen selbstadjungierten Randwertaufgaben zweiter Ordnung”, Math. Z., 44 (1938), 635–658 | DOI | MR

[7] Mennicken R., Schmid H., Shkalikov A. A., “On the eigenvalue accumulation of Sturm–Liouville problems depending nonlinearly on the spectral parameter”, Math. Nachr., 189 (1998), 157–170 | DOI | MR | Zbl