Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2003_74_6_a3, author = {A. A. Vladimirov}, title = {Estimates of the {Number} of {Eigenvalues} of {Self-Adjoint} {Operator} {Functions}}, journal = {Matemati\v{c}eskie zametki}, pages = {838--847}, publisher = {mathdoc}, volume = {74}, number = {6}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a3/} }
A. A. Vladimirov. Estimates of the Number of Eigenvalues of Self-Adjoint Operator Functions. Matematičeskie zametki, Tome 74 (2003) no. 6, pp. 838-847. http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a3/
[1] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979
[2] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | Zbl
[3] Glazman I. M., Pryamye metody kachestvennogo spektralnogo analiza singulyarnykh differentsialnykh operatorov, Fizmatgiz, M., 1963
[4] Rofe-Beketov F. S., Kholkin A. M., Spektralnyi analiz differentsialnykh operatorov. Svyaz spektralnykh i ostsillyatsionnykh svoistv, Mariupol, 2001
[5] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969
[6] Kamke E., “Neue Herleitung der Oszillationssätze für die linearen selbstadjungierten Randwertaufgaben zweiter Ordnung”, Math. Z., 44 (1938), 635–658 | DOI | MR
[7] Mennicken R., Schmid H., Shkalikov A. A., “On the eigenvalue accumulation of Sturm–Liouville problems depending nonlinearly on the spectral parameter”, Math. Nachr., 189 (1998), 157–170 | DOI | MR | Zbl