Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2003_74_6_a2, author = {V. I. Buslaev and S. F. Buslaeva}, title = {On the {Rogers--Ramanujan} {Periodic} {Continued} {Fraction}}, journal = {Matemati\v{c}eskie zametki}, pages = {827--837}, publisher = {mathdoc}, volume = {74}, number = {6}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a2/} }
V. I. Buslaev; S. F. Buslaeva. On the Rogers--Ramanujan Periodic Continued Fraction. Matematičeskie zametki, Tome 74 (2003) no. 6, pp. 827-837. http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a2/
[1] Worpitsky J., “Untersuchungen über die Entwickelung der monodromen und monogenen Funktionen durch Kettenbruche”, Friedrichs-Gymnasium rund Realschule Jahresbericht, Berlin, 1865, 3–39
[2] Hirschhorn M. D., “Partitions and Ramanujan's continued fraction”, Duke Math. J., 39 (1972), 789–791 | DOI | MR | Zbl
[3] Lubinsky D. S., “Rogers–Ramanujan and the Baker–Gammel–Wills (Padé) conjecture”, Ann. of Math., 157:3 (2003), 847–889 | DOI | MR | Zbl
[4] Baker G. A., Gammel J. L., Wills J. G., “An investigation of the applicability of the Padé approximant method”, J. Math. Anal. Appl., 2 (1961), 405–418 | DOI | MR | Zbl
[5] Stahl H., “Conjectures around Baker–Gammel–Wills conjecture: Research problems 97-2”, Constructive Approx., 13 (1997), 287–292 | DOI | MR | Zbl
[6] Stahl H., “Diagonal Padé approximants to hyperelliptic functions”, Ann. Fac. Sci. Toulouse. Math., 6 (1996), 121–193 | MR
[7] Suetin S. P., “O ravnomernoi skhodimosti diagonalnykh approksimatsii Pade dlya giperellipticheskikh funktsii”, Matem. sb., 191:9 (2000), 81–114 | MR | Zbl
[8] Suetin S. P., “Approksimatsii Pade i effektivnoe analiticheskoe prodolzhenie stepennogo ryada”, UMN, 57:1 (2002), 45–142 | MR | Zbl
[9] Buslaev V. I., “O gipoteze Beikera–Gammelya–Uillsa v teorii approksimatsii Pade”, Matem. sb., 193:6 (2002), 25–38 | MR | Zbl