On the Rogers--Ramanujan Periodic Continued Fraction
Matematičeskie zametki, Tome 74 (2003) no. 6, pp. 827-837
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, the convergence properties of the Rogers–Ramanujan continued fraction
$$
1+\frac{qz}{1+\frac{q^2z}{1+\cdots}}
$$
are studied for $q=\exp (2\pi i\tau)$, where $\tau$ is a rational number. It is shown that the function $H_q$ to which the fraction converges is a counterexample to the Stahl conjecture (the hyperelliptic version of the well-known Baker–Gammel–Wills conjecture). It is also shown that, for any rational $\tau$, the number of spurious poles of the diagonal Padé approximants of the hyperelliptic function $H_q$ does not exceed one half of its genus.
@article{MZM_2003_74_6_a2,
author = {V. I. Buslaev and S. F. Buslaeva},
title = {On the {Rogers--Ramanujan} {Periodic} {Continued} {Fraction}},
journal = {Matemati\v{c}eskie zametki},
pages = {827--837},
publisher = {mathdoc},
volume = {74},
number = {6},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a2/}
}
V. I. Buslaev; S. F. Buslaeva. On the Rogers--Ramanujan Periodic Continued Fraction. Matematičeskie zametki, Tome 74 (2003) no. 6, pp. 827-837. http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a2/