On the Rogers--Ramanujan Periodic Continued Fraction
Matematičeskie zametki, Tome 74 (2003) no. 6, pp. 827-837.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the convergence properties of the Rogers–Ramanujan continued fraction $$ 1+\frac{qz}{1+\frac{q^2z}{1+\cdots}} $$ are studied for $q=\exp (2\pi i\tau)$, where $\tau$ is a rational number. It is shown that the function $H_q$ to which the fraction converges is a counterexample to the Stahl conjecture (the hyperelliptic version of the well-known Baker–Gammel–Wills conjecture). It is also shown that, for any rational $\tau$, the number of spurious poles of the diagonal Padé approximants of the hyperelliptic function $H_q$ does not exceed one half of its genus.
@article{MZM_2003_74_6_a2,
     author = {V. I. Buslaev and S. F. Buslaeva},
     title = {On the {Rogers--Ramanujan} {Periodic} {Continued} {Fraction}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {827--837},
     publisher = {mathdoc},
     volume = {74},
     number = {6},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a2/}
}
TY  - JOUR
AU  - V. I. Buslaev
AU  - S. F. Buslaeva
TI  - On the Rogers--Ramanujan Periodic Continued Fraction
JO  - Matematičeskie zametki
PY  - 2003
SP  - 827
EP  - 837
VL  - 74
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a2/
LA  - ru
ID  - MZM_2003_74_6_a2
ER  - 
%0 Journal Article
%A V. I. Buslaev
%A S. F. Buslaeva
%T On the Rogers--Ramanujan Periodic Continued Fraction
%J Matematičeskie zametki
%D 2003
%P 827-837
%V 74
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a2/
%G ru
%F MZM_2003_74_6_a2
V. I. Buslaev; S. F. Buslaeva. On the Rogers--Ramanujan Periodic Continued Fraction. Matematičeskie zametki, Tome 74 (2003) no. 6, pp. 827-837. http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a2/

[1] Worpitsky J., “Untersuchungen über die Entwickelung der monodromen und monogenen Funktionen durch Kettenbruche”, Friedrichs-Gymnasium rund Realschule Jahresbericht, Berlin, 1865, 3–39

[2] Hirschhorn M. D., “Partitions and Ramanujan's continued fraction”, Duke Math. J., 39 (1972), 789–791 | DOI | MR | Zbl

[3] Lubinsky D. S., “Rogers–Ramanujan and the Baker–Gammel–Wills (Padé) conjecture”, Ann. of Math., 157:3 (2003), 847–889 | DOI | MR | Zbl

[4] Baker G. A., Gammel J. L., Wills J. G., “An investigation of the applicability of the Padé approximant method”, J. Math. Anal. Appl., 2 (1961), 405–418 | DOI | MR | Zbl

[5] Stahl H., “Conjectures around Baker–Gammel–Wills conjecture: Research problems 97-2”, Constructive Approx., 13 (1997), 287–292 | DOI | MR | Zbl

[6] Stahl H., “Diagonal Padé approximants to hyperelliptic functions”, Ann. Fac. Sci. Toulouse. Math., 6 (1996), 121–193 | MR

[7] Suetin S. P., “O ravnomernoi skhodimosti diagonalnykh approksimatsii Pade dlya giperellipticheskikh funktsii”, Matem. sb., 191:9 (2000), 81–114 | MR | Zbl

[8] Suetin S. P., “Approksimatsii Pade i effektivnoe analiticheskoe prodolzhenie stepennogo ryada”, UMN, 57:1 (2002), 45–142 | MR | Zbl

[9] Buslaev V. I., “O gipoteze Beikera–Gammelya–Uillsa v teorii approksimatsii Pade”, Matem. sb., 193:6 (2002), 25–38 | MR | Zbl