Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2003_74_6_a11, author = {V. V. Smagin}, title = {Strong-Norm {Error} {Estimates} for the {Projective-Difference} {Method} for {Parabolic} {Equations} with {Modified} {Crank--Nicolson} {Scheme}}, journal = {Matemati\v{c}eskie zametki}, pages = {913--923}, publisher = {mathdoc}, volume = {74}, number = {6}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a11/} }
TY - JOUR AU - V. V. Smagin TI - Strong-Norm Error Estimates for the Projective-Difference Method for Parabolic Equations with Modified Crank--Nicolson Scheme JO - Matematičeskie zametki PY - 2003 SP - 913 EP - 923 VL - 74 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a11/ LA - ru ID - MZM_2003_74_6_a11 ER -
%0 Journal Article %A V. V. Smagin %T Strong-Norm Error Estimates for the Projective-Difference Method for Parabolic Equations with Modified Crank--Nicolson Scheme %J Matematičeskie zametki %D 2003 %P 913-923 %V 74 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a11/ %G ru %F MZM_2003_74_6_a11
V. V. Smagin. Strong-Norm Error Estimates for the Projective-Difference Method for Parabolic Equations with Modified Crank--Nicolson Scheme. Matematičeskie zametki, Tome 74 (2003) no. 6, pp. 913-923. http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a11/
[1] Smagin V. V., “Otsenki v silnykh normakh pogreshnosti proektsionno-raznostnogo metoda priblizhennogo resheniya abstraktnogo parabolicheskogo uravneniya”, Matem. zametki, 62:6 (1997), 898–909 | MR | Zbl
[2] Smagin V. V., “Srednekvadratichnye otsenki pogreshnosti proektsionno-raznostnogo metoda dlya parabolicheskikh uravnenii”, ZhVMiMF, 40:6 (2000), 908–919 | MR | Zbl
[3] Smagin V. V., “Energeticheskie otsenki pogreshnosti proektsionno-raznostnogo metoda so skhemoi Kranka–Nikolson dlya parabolicheskikh uravnenii”, Sib. matem. zh., 42:3 (2001), 670–682 | MR | Zbl
[4] Smagin V. V., “Proektsionno-raznostnye metody priblizhennogo resheniya parabolicheskikh uravnenii s nesimmetrichnymi operatorami”, Differents. uravneniya, 37:1 (2001), 115–123 | MR | Zbl
[5] Turetaev I. D., “Tochnye otsenki gradienta pogreshnosti proektsionno-raznostnykh skhem dlya parabolicheskikh uravnenii v proizvolnoi oblasti”, ZhVMiMF, 26:11 (1986), 1748–1751 | MR
[6] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl
[7] Smagin V. V., “O razreshimosti abstraktnogo parabolicheskogo uravneniya s operatorom, oblast opredeleniya kotorogo zavisit ot vremeni”, Differents. uravneniya, 32:5 (1996), 711–712 | MR | Zbl
[8] Smagin V. V., “O gladkoi razreshimosti variatsionnykh zadach parabolicheskogo tipa”, Tr. matem. f-ta (novaya seriya), no. 3, Izd-vo Voronezhskogo gos. un-ta, Voronezh, 1998, 67–72
[9] Smagin V. V., “Otsenki skorosti skhodimosti proektsionnogo i proektsionno-raznostnogo metodov dlya slabo razreshimykh parabolicheskikh uravnenii”, Matem. sb., 188:3 (1997), 143–160 | MR
[10] Vainikko G. M., Oya P. E., “O skhodimosti i bystrote skhodimosti metoda Galerkina dlya abstraktnykh evolyutsionnykh uravnenii”, Differents. uravneniya, 11:7 (1975), 1269–1277 | MR | Zbl
[11] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1989
[12] Smagin V. V., “Otsenki pogreshnosti poludiskretnykh priblizhenii po Galerkinu dlya parabolicheskikh uravnenii s kraevym usloviem tipa Neimana”, Izv. vuzov. Ser. matem., 1996, no. 3(406), 50–57 | MR | Zbl