On the Unitary Similarity of Matrix Families
Matematičeskie zametki, Tome 74 (2003) no. 6, pp. 815-826

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical Specht criterion for the unitary similarity between two complex $(n\times n)$ matrices is extended to the unitary similarity between two normal matrix sets of cardinality $m$. This property means that the algebra generated by a set is closed with respect to the conjugate transpose operation. Similar to the well-known result of Pearcy that supplements Specht"s theorem, the proposed extension can be made a finite criterion. The complexity of this criterion depends on n as well as the length l of the algebras under analysis. For a pair of matrices, this complexity can be significantly lower than that of the Specht–Pearcy criterion.
@article{MZM_2003_74_6_a1,
     author = {Yu. A. Alpin and Kh. D. Ikramov},
     title = {On the {Unitary} {Similarity} of {Matrix} {Families}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {815--826},
     publisher = {mathdoc},
     volume = {74},
     number = {6},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a1/}
}
TY  - JOUR
AU  - Yu. A. Alpin
AU  - Kh. D. Ikramov
TI  - On the Unitary Similarity of Matrix Families
JO  - Matematičeskie zametki
PY  - 2003
SP  - 815
EP  - 826
VL  - 74
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a1/
LA  - ru
ID  - MZM_2003_74_6_a1
ER  - 
%0 Journal Article
%A Yu. A. Alpin
%A Kh. D. Ikramov
%T On the Unitary Similarity of Matrix Families
%J Matematičeskie zametki
%D 2003
%P 815-826
%V 74
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a1/
%G ru
%F MZM_2003_74_6_a1
Yu. A. Alpin; Kh. D. Ikramov. On the Unitary Similarity of Matrix Families. Matematičeskie zametki, Tome 74 (2003) no. 6, pp. 815-826. http://geodesic.mathdoc.fr/item/MZM_2003_74_6_a1/