Uniform Approximation by the Class of Functions with Bounded Derivative
Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 696-712.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the problem of uniform approximation of a continuous function defined on an interval is considered. The approximating functions have absolutely continuous derivatives of order $n-1$ and derivatives of order n bounded in absolute value. An alternance criterion for a best approximation element in this class is given. This criterion generalizes the criterion for the best approximation element obtained by N. P. Korneichuk in the class of Lipschitz functions.
@article{MZM_2003_74_5_a5,
     author = {A. V. Mironenko},
     title = {Uniform {Approximation} by the {Class} of {Functions} with {Bounded} {Derivative}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {696--712},
     publisher = {mathdoc},
     volume = {74},
     number = {5},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a5/}
}
TY  - JOUR
AU  - A. V. Mironenko
TI  - Uniform Approximation by the Class of Functions with Bounded Derivative
JO  - Matematičeskie zametki
PY  - 2003
SP  - 696
EP  - 712
VL  - 74
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a5/
LA  - ru
ID  - MZM_2003_74_5_a5
ER  - 
%0 Journal Article
%A A. V. Mironenko
%T Uniform Approximation by the Class of Functions with Bounded Derivative
%J Matematičeskie zametki
%D 2003
%P 696-712
%V 74
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a5/
%G ru
%F MZM_2003_74_5_a5
A. V. Mironenko. Uniform Approximation by the Class of Functions with Bounded Derivative. Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 696-712. http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a5/

[1] Korneichuk N. P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976 | MR

[2] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. M., Metody splain funktsii, Nauka, M., 1980 | MR

[3] Larry L. Schumaker, Spline functions: basic theory, New York, 1981 | MR

[4] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR