The Integral Heisenberg Group as an Infinite Amalgam of Commutative Groups
Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 669-675
Cet article a éte moissonné depuis la source Math-Net.Ru
The $2n$-dimensional integral lattice, $n > 1$, equipped with the standard skew-symmetric 2-form additive with respect to each of the variables is considered. The family of all isotropic sublattices is studied. It is proved that the amalgam of this family of groups is the integral Heisenberg group.
@article{MZM_2003_74_5_a2,
author = {R. S. Ismagilov},
title = {The {Integral} {Heisenberg} {Group} as an {Infinite} {Amalgam} of {Commutative} {Groups}},
journal = {Matemati\v{c}eskie zametki},
pages = {669--675},
year = {2003},
volume = {74},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a2/}
}
R. S. Ismagilov. The Integral Heisenberg Group as an Infinite Amalgam of Commutative Groups. Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 669-675. http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a2/
[1] Serr Zh. P., “Derevya, amalgamy i $SL_2$”, Matematika, 18:1 (1974), 3–51 | Zbl
[2] Ismagilov R. S., “Nekotorye zadachi ob universalnykh otobrazheniyakh”, Vestn. Tambovskogo un-ta. Ser. Estestv. i tekh. nauki, 2:4 (1997), 367–371
[3] Ismagilov R. S., “Slabye KKS i KAS i induktivnye predely semeistv grupp i algebr”, Funktsion. analiz i ego prilozh., 34:2 (2000), 75–78 | MR | Zbl