The Integral Heisenberg Group as an Infinite Amalgam of Commutative Groups
Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 669-675.

Voir la notice de l'article provenant de la source Math-Net.Ru

The $2n$-dimensional integral lattice, $n > 1$, equipped with the standard skew-symmetric 2-form additive with respect to each of the variables is considered. The family of all isotropic sublattices is studied. It is proved that the amalgam of this family of groups is the integral Heisenberg group.
@article{MZM_2003_74_5_a2,
     author = {R. S. Ismagilov},
     title = {The {Integral} {Heisenberg} {Group} as an {Infinite} {Amalgam} of {Commutative} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {669--675},
     publisher = {mathdoc},
     volume = {74},
     number = {5},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a2/}
}
TY  - JOUR
AU  - R. S. Ismagilov
TI  - The Integral Heisenberg Group as an Infinite Amalgam of Commutative Groups
JO  - Matematičeskie zametki
PY  - 2003
SP  - 669
EP  - 675
VL  - 74
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a2/
LA  - ru
ID  - MZM_2003_74_5_a2
ER  - 
%0 Journal Article
%A R. S. Ismagilov
%T The Integral Heisenberg Group as an Infinite Amalgam of Commutative Groups
%J Matematičeskie zametki
%D 2003
%P 669-675
%V 74
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a2/
%G ru
%F MZM_2003_74_5_a2
R. S. Ismagilov. The Integral Heisenberg Group as an Infinite Amalgam of Commutative Groups. Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 669-675. http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a2/

[1] Serr Zh. P., “Derevya, amalgamy i $SL_2$”, Matematika, 18:1 (1974), 3–51 | Zbl

[2] Ismagilov R. S., “Nekotorye zadachi ob universalnykh otobrazheniyakh”, Vestn. Tambovskogo un-ta. Ser. Estestv. i tekh. nauki, 2:4 (1997), 367–371

[3] Ismagilov R. S., “Slabye KKS i KAS i induktivnye predely semeistv grupp i algebr”, Funktsion. analiz i ego prilozh., 34:2 (2000), 75–78 | MR | Zbl