Seven Classes of Harmonic Diffeomorphisms
Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 752-761.

Voir la notice de l'article provenant de la source Math-Net.Ru

We deduce two necessary and sufficient conditions for a diffeomorphism $f\ :M\to\overline M$ of a Riemannian manifold $(M,g)$ onto a Riemannian manifold $(\overline M,\bar g)$ to be harmonic. Using the representation theory of groups, we define in an intrinsic way seven classes of such harmonic diffeomorphisms and partly describe the geometry of each class.
@article{MZM_2003_74_5_a11,
     author = {S. E. Stepanov and I. G. Shandra},
     title = {Seven {Classes} of {Harmonic} {Diffeomorphisms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {752--761},
     publisher = {mathdoc},
     volume = {74},
     number = {5},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a11/}
}
TY  - JOUR
AU  - S. E. Stepanov
AU  - I. G. Shandra
TI  - Seven Classes of Harmonic Diffeomorphisms
JO  - Matematičeskie zametki
PY  - 2003
SP  - 752
EP  - 761
VL  - 74
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a11/
LA  - ru
ID  - MZM_2003_74_5_a11
ER  - 
%0 Journal Article
%A S. E. Stepanov
%A I. G. Shandra
%T Seven Classes of Harmonic Diffeomorphisms
%J Matematičeskie zametki
%D 2003
%P 752-761
%V 74
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a11/
%G ru
%F MZM_2003_74_5_a11
S. E. Stepanov; I. G. Shandra. Seven Classes of Harmonic Diffeomorphisms. Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 752-761. http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a11/

[1] Eells J., Lemaire L., “A report on harmonic maps”, Bull. London Math. Soc., 10 (1978), 1–68 | DOI | MR | Zbl

[2] Eells J., Lemaire L., “Another report on harmonic maps”, Bull. London Math. Soc., 20 (1988), 385–584 | DOI | MR

[3] Davidov I., Sergeev A. G., “Tvistornye prostranstva i garmonicheskie otobrazheniya”, UMN, 48:3 (1993), 3–96 | MR | Zbl

[4] Dao Chong Tkhi, Fomenko A. T., Minimalnye poverkhnosti i problema Plato, Nauka, M., 1987 | MR | Zbl

[5] Stepanov S. E., “Riemannian almost product manifolds and submersions”, J. Math. Sci., 99:6 (2000), 1788–1831 | DOI | MR | Zbl

[6] Nomizu K., Pinkall U., “On the geometry of projective immersion”, J. Math. Soc. Japan, 41:4 (1989), 607–623 | DOI | MR | Zbl

[7] Podesta F., “Projective submersion”, Bull. Austral. Math. Soc., 43:2 (1991), 251–256 | DOI | MR | Zbl

[8] Shandra I. G., “O geodezicheskoi podvizhnosti rimanovykh prostranstv”, Matem. zametki, 68:4 (2000), 620–626 | MR | Zbl

[9] Sinyukov N. S., Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1979 | MR | Zbl

[10] Aminova A. V., “Psevdorimanovy mnogoobraziya s obschimi geodezicheskimi”, UMN, 48:2 (1993), 107–164 | MR | Zbl

[11] Stepanov S. E., “The classification of harmonic diffeomorphisms”, Abstracts of the 5th International Conf. on Geom. and Appl. (August 24-29, 2001, Varna), Union of Bulgarian Mathematicians, Sofia, 2001, 55

[12] Narasimkhan R., Analiz na deistvitelnykh i kompleksnykh mnogoobraziyakh, Mir, M., 1971 | Zbl

[13] Eizenkhart L. P., Rimanova geometriya, IL, M., 1948

[14] Veil G., Klassicheskie gruppy, ikh invarianty i predstavleniya, Mir, M., 1947

[15] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976 | MR

[16] Besse A., Mnogoobraziya Einshteina, Mir, M., 1990 | MR | Zbl

[17] Kramer D. i dr., Tochnye resheniya uravnenii Einshteina, Energoizdat, M., 1982 | MR

[18] Katzin G. H., Levine J., “Quadratic first integrals of the geodesics of constant curvature”, Tensor, N.S., 16 (1965), 97–104 | MR | Zbl

[19] Stepanov S. E., “O primenenii odnoi teoremy P. A. Shirokova v tekhnike Bokhnera”, Izv. vuzov. Matem., 1996, no. 9, 53–59 | MR | Zbl

[20] Shirokov P. A., “Postoyannye polya vektorov i tenzorov vtorogo poryadka v Riemann'ovykh prostranstvakh”, Izv. fiz.-matem. o-va. Kazan, 25 (1925), 86–114