Seven Classes of Harmonic Diffeomorphisms
Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 752-761

Voir la notice de l'article provenant de la source Math-Net.Ru

We deduce two necessary and sufficient conditions for a diffeomorphism $f\ :M\to\overline M$ of a Riemannian manifold $(M,g)$ onto a Riemannian manifold $(\overline M,\bar g)$ to be harmonic. Using the representation theory of groups, we define in an intrinsic way seven classes of such harmonic diffeomorphisms and partly describe the geometry of each class.
@article{MZM_2003_74_5_a11,
     author = {S. E. Stepanov and I. G. Shandra},
     title = {Seven {Classes} of {Harmonic} {Diffeomorphisms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {752--761},
     publisher = {mathdoc},
     volume = {74},
     number = {5},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a11/}
}
TY  - JOUR
AU  - S. E. Stepanov
AU  - I. G. Shandra
TI  - Seven Classes of Harmonic Diffeomorphisms
JO  - Matematičeskie zametki
PY  - 2003
SP  - 752
EP  - 761
VL  - 74
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a11/
LA  - ru
ID  - MZM_2003_74_5_a11
ER  - 
%0 Journal Article
%A S. E. Stepanov
%A I. G. Shandra
%T Seven Classes of Harmonic Diffeomorphisms
%J Matematičeskie zametki
%D 2003
%P 752-761
%V 74
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a11/
%G ru
%F MZM_2003_74_5_a11
S. E. Stepanov; I. G. Shandra. Seven Classes of Harmonic Diffeomorphisms. Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 752-761. http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a11/