Seven Classes of Harmonic Diffeomorphisms
Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 752-761
Voir la notice de l'article provenant de la source Math-Net.Ru
We deduce two necessary and sufficient conditions for a diffeomorphism $f\ :M\to\overline M$ of a Riemannian manifold $(M,g)$ onto a Riemannian manifold $(\overline M,\bar g)$ to be harmonic. Using the representation theory of groups, we define in an intrinsic way seven classes of such harmonic diffeomorphisms and partly describe the geometry of each class.
@article{MZM_2003_74_5_a11,
author = {S. E. Stepanov and I. G. Shandra},
title = {Seven {Classes} of {Harmonic} {Diffeomorphisms}},
journal = {Matemati\v{c}eskie zametki},
pages = {752--761},
publisher = {mathdoc},
volume = {74},
number = {5},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a11/}
}
S. E. Stepanov; I. G. Shandra. Seven Classes of Harmonic Diffeomorphisms. Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 752-761. http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a11/