Existence of Continuous Functions with a Given Order of Decrease of Least Deviations from Rational Approximations
Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 745-751

Voir la notice de l'article provenant de la source Math-Net.Ru

For a given strictly decreasing sequence $\{a_n\}^\infty_{n=0}$ of real numbers convergent to zero, we construct a continuous function $g$ on the closed interval $[-1,1]$ such that $R_{2n}(g)$ and $a_n$ have identical order of decrease as $n\to\infty$. Here $R_{n}(g)$ are the best approximations on the closed interval $[-1,1]$ in the uniform norm of the function $g$ by algebraic rational functions of degree at most $n$.
@article{MZM_2003_74_5_a10,
     author = {A. P. Starovoitov},
     title = {Existence of {Continuous} {Functions} with a {Given} {Order} of {Decrease} of {Least} {Deviations} from {Rational} {Approximations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {745--751},
     publisher = {mathdoc},
     volume = {74},
     number = {5},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a10/}
}
TY  - JOUR
AU  - A. P. Starovoitov
TI  - Existence of Continuous Functions with a Given Order of Decrease of Least Deviations from Rational Approximations
JO  - Matematičeskie zametki
PY  - 2003
SP  - 745
EP  - 751
VL  - 74
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a10/
LA  - ru
ID  - MZM_2003_74_5_a10
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%T Existence of Continuous Functions with a Given Order of Decrease of Least Deviations from Rational Approximations
%J Matematičeskie zametki
%D 2003
%P 745-751
%V 74
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a10/
%G ru
%F MZM_2003_74_5_a10
A. P. Starovoitov. Existence of Continuous Functions with a Given Order of Decrease of Least Deviations from Rational Approximations. Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 745-751. http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a10/