Existence of Continuous Functions with a Given Order of Decrease of Least Deviations from Rational Approximations
Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 745-751
Voir la notice de l'article provenant de la source Math-Net.Ru
For a given strictly decreasing sequence $\{a_n\}^\infty_{n=0}$ of real numbers convergent to zero, we construct a continuous function $g$ on the closed interval $[-1,1]$ such that $R_{2n}(g)$ and $a_n$ have identical order of decrease as $n\to\infty$. Here $R_{n}(g)$ are the best approximations on the closed interval $[-1,1]$ in the uniform norm of the function $g$ by algebraic rational functions of degree at most $n$.
@article{MZM_2003_74_5_a10,
author = {A. P. Starovoitov},
title = {Existence of {Continuous} {Functions} with a {Given} {Order} of {Decrease} of {Least} {Deviations} from {Rational} {Approximations}},
journal = {Matemati\v{c}eskie zametki},
pages = {745--751},
publisher = {mathdoc},
volume = {74},
number = {5},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a10/}
}
TY - JOUR AU - A. P. Starovoitov TI - Existence of Continuous Functions with a Given Order of Decrease of Least Deviations from Rational Approximations JO - Matematičeskie zametki PY - 2003 SP - 745 EP - 751 VL - 74 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a10/ LA - ru ID - MZM_2003_74_5_a10 ER -
%0 Journal Article %A A. P. Starovoitov %T Existence of Continuous Functions with a Given Order of Decrease of Least Deviations from Rational Approximations %J Matematičeskie zametki %D 2003 %P 745-751 %V 74 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a10/ %G ru %F MZM_2003_74_5_a10
A. P. Starovoitov. Existence of Continuous Functions with a Given Order of Decrease of Least Deviations from Rational Approximations. Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 745-751. http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a10/