Locally Minimal Trees in $n$-Normed Spaces
Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 656-668.

Voir la notice de l'article provenant de la source Math-Net.Ru

The locally minimal trees in normed spaces $({\mathbb R}^2,\rho)$, where the unit circle $\Sigma=\{x\in{\mathbb R}^2\mid{\rho}(x)=1\}$ in the norm $\rho$ coincides with the regular $m$-gon ($m = 2n$) inscribed in the Euclidean unit circle $S^1$, are completely classified.
@article{MZM_2003_74_5_a1,
     author = {D. P. Il'yutko},
     title = {Locally {Minimal} {Trees} in $n${-Normed} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {656--668},
     publisher = {mathdoc},
     volume = {74},
     number = {5},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a1/}
}
TY  - JOUR
AU  - D. P. Il'yutko
TI  - Locally Minimal Trees in $n$-Normed Spaces
JO  - Matematičeskie zametki
PY  - 2003
SP  - 656
EP  - 668
VL  - 74
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a1/
LA  - ru
ID  - MZM_2003_74_5_a1
ER  - 
%0 Journal Article
%A D. P. Il'yutko
%T Locally Minimal Trees in $n$-Normed Spaces
%J Matematičeskie zametki
%D 2003
%P 656-668
%V 74
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a1/
%G ru
%F MZM_2003_74_5_a1
D. P. Il'yutko. Locally Minimal Trees in $n$-Normed Spaces. Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 656-668. http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a1/

[1] Du D. Z., Hwang F. K., Weng J. F., “Steiner minimal trees for Regular Polygons”, Disk. and Comp. Geometry, 2 (1987), 65–84 | DOI | MR | Zbl

[2] Fermat P., Abhandlungen uber Maxima und Minima, Oswalds Klassiker der Exakten Wissenschaften, 238, 1934 | Zbl

[3] Jarnik V., Kössler M., “O minimalnich grafeth obeahujiicich n danijch bodu”, Cas. Pest. Mat. a Fys., 63 (1934), 223–235 | Zbl

[4] Smith W. D., “How to find Steiner minimal trees in Euclidean $d$-space”, Algoritmica, 1992, no. 7, 137–177 | DOI | MR

[5] Francis R. L., “A note on the optimum location of new machines in existing plant loyouts”, J. Indust. Engrg., 14 (1963), 57–59

[6] Hanan M., “On Steiner's Problem with Rectilinear Distance”, SIAM J. Appl. Math., 14 (1966), 255–265 | DOI | MR | Zbl

[7] Hwang F. K., “On Steiner minimal trees with rectilinear distance”, SIAM J. Appl. Math., 30 (1976), 104–114 | DOI | MR | Zbl

[8] Garey M. R., Johnson D. S., “The Rectilinear Steiner Problem is NP-Complete”, SIAM J. Appl. Math., 32 (1977), 826–834 | DOI | MR | Zbl

[9] Ivanov A. O., Tuzhilin A. A., Branching Solutions to One-Dimensional Variational Problems, World Scientific Publishing Co. Pte. Ltd, Singapore, 2001 | MR