Locally Minimal Trees in $n$-Normed Spaces
Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 656-668

Voir la notice de l'article provenant de la source Math-Net.Ru

The locally minimal trees in normed spaces $({\mathbb R}^2,\rho)$, where the unit circle $\Sigma=\{x\in{\mathbb R}^2\mid{\rho}(x)=1\}$ in the norm $\rho$ coincides with the regular $m$-gon ($m = 2n$) inscribed in the Euclidean unit circle $S^1$, are completely classified.
@article{MZM_2003_74_5_a1,
     author = {D. P. Il'yutko},
     title = {Locally {Minimal} {Trees} in $n${-Normed} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {656--668},
     publisher = {mathdoc},
     volume = {74},
     number = {5},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a1/}
}
TY  - JOUR
AU  - D. P. Il'yutko
TI  - Locally Minimal Trees in $n$-Normed Spaces
JO  - Matematičeskie zametki
PY  - 2003
SP  - 656
EP  - 668
VL  - 74
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a1/
LA  - ru
ID  - MZM_2003_74_5_a1
ER  - 
%0 Journal Article
%A D. P. Il'yutko
%T Locally Minimal Trees in $n$-Normed Spaces
%J Matematičeskie zametki
%D 2003
%P 656-668
%V 74
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a1/
%G ru
%F MZM_2003_74_5_a1
D. P. Il'yutko. Locally Minimal Trees in $n$-Normed Spaces. Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 656-668. http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a1/