Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2003_74_5_a1, author = {D. P. Il'yutko}, title = {Locally {Minimal} {Trees} in $n${-Normed} {Spaces}}, journal = {Matemati\v{c}eskie zametki}, pages = {656--668}, publisher = {mathdoc}, volume = {74}, number = {5}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a1/} }
D. P. Il'yutko. Locally Minimal Trees in $n$-Normed Spaces. Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 656-668. http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a1/
[1] Du D. Z., Hwang F. K., Weng J. F., “Steiner minimal trees for Regular Polygons”, Disk. and Comp. Geometry, 2 (1987), 65–84 | DOI | MR | Zbl
[2] Fermat P., Abhandlungen uber Maxima und Minima, Oswalds Klassiker der Exakten Wissenschaften, 238, 1934 | Zbl
[3] Jarnik V., Kössler M., “O minimalnich grafeth obeahujiicich n danijch bodu”, Cas. Pest. Mat. a Fys., 63 (1934), 223–235 | Zbl
[4] Smith W. D., “How to find Steiner minimal trees in Euclidean $d$-space”, Algoritmica, 1992, no. 7, 137–177 | DOI | MR
[5] Francis R. L., “A note on the optimum location of new machines in existing plant loyouts”, J. Indust. Engrg., 14 (1963), 57–59
[6] Hanan M., “On Steiner's Problem with Rectilinear Distance”, SIAM J. Appl. Math., 14 (1966), 255–265 | DOI | MR | Zbl
[7] Hwang F. K., “On Steiner minimal trees with rectilinear distance”, SIAM J. Appl. Math., 30 (1976), 104–114 | DOI | MR | Zbl
[8] Garey M. R., Johnson D. S., “The Rectilinear Steiner Problem is NP-Complete”, SIAM J. Appl. Math., 32 (1977), 826–834 | DOI | MR | Zbl
[9] Ivanov A. O., Tuzhilin A. A., Branching Solutions to One-Dimensional Variational Problems, World Scientific Publishing Co. Pte. Ltd, Singapore, 2001 | MR