Sign Regularity Conditions for Discontinuous Boundary-Value Problems
Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 643-655.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a multipoint discontinuous boundary-value problem with nonoscillating differential operator, we present an analog of the Kalafati conditions that ensure the sign regularity property, i.e., the property that the number of sign changes of the solution does not exceed the number of sign changes of the function on the right-hand side. The sign regularity property allows one to verify whether the spectrum of the corresponding spectral problem exhibits the Sturm properties (i.e., the reality, positiveness, and simplicity of eigenvalues, the alternation of zeros of eigenfunctions, etc.).
@article{MZM_2003_74_5_a0,
     author = {A. V. Borovskikh},
     title = {Sign {Regularity} {Conditions} for {Discontinuous} {Boundary-Value} {Problems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--655},
     publisher = {mathdoc},
     volume = {74},
     number = {5},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a0/}
}
TY  - JOUR
AU  - A. V. Borovskikh
TI  - Sign Regularity Conditions for Discontinuous Boundary-Value Problems
JO  - Matematičeskie zametki
PY  - 2003
SP  - 643
EP  - 655
VL  - 74
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a0/
LA  - ru
ID  - MZM_2003_74_5_a0
ER  - 
%0 Journal Article
%A A. V. Borovskikh
%T Sign Regularity Conditions for Discontinuous Boundary-Value Problems
%J Matematičeskie zametki
%D 2003
%P 643-655
%V 74
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a0/
%G ru
%F MZM_2003_74_5_a0
A. V. Borovskikh. Sign Regularity Conditions for Discontinuous Boundary-Value Problems. Matematičeskie zametki, Tome 74 (2003) no. 5, pp. 643-655. http://geodesic.mathdoc.fr/item/MZM_2003_74_5_a0/

[1] Sturm C., “Memorè sur les èquations differentielles linèaires du second ordre”, J. Math. Pures Appl., 1 (1836), 373–444

[2] Kellogg O. D., “Orthogonal Function Sets Arising from Integral Equations”, Amer. J. Math., 1918, no. 40, 145–154 | DOI | MR

[3] Kellogg O. D., “Interpolation Properties of Orthogonal Sets of Solutions of Differential Equations”, Amer. J. Math., 1918, no. 40, 220–234 | MR

[4] Krein M. G., “O nesimmetricheskikh ostsillyatsionnykh funktsiyakh Grina obyknovennykh differentsialnykh operatorov”, Dokl. AN SSSR, 25:8 (1939), 643–646 | MR | Zbl

[5] Krein M. G., “Ostsillyatsionnye teoremy dlya obyknovennykh differentsialnykh operatorov proizvolnogo poryadka”, Dokl. AN SSSR, 25:9 (1939), 717–720

[6] Gantmakher F. R., Krein M. G., Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, Gostekhizdat, M.–L., 1950

[7] Levin A. Yu., Stepanov G. D., “Odnomernye kraevye zadachi s operatorami, ne ponizhayuschimi chisla peremen znaka”, Sib. matem. zh., 17:3 (1976), 606–625 ; 17:4, 813–830 | MR | Zbl

[8] Pokornyi Yu. V., “O spektre interpolyatsionnoi kraevoi zadachi”, UMN, 32:6 (1977), 198–199

[9] Pokornyi Yu. V., “O neklassicheskoi zadache Valle-Pussena”, Differents. uravneniya, 14:6 (1978), 1018–1027 | MR | Zbl

[10] Pokornyi Yu. V., Lazarev K. P., “Nekotorye ostsillyatsionnye teoremy dlya mnogotochechnykh zadach”, Differents. uravneniya, 23:4 (1987), 658–670 | MR | Zbl

[11] Derr V. Ya., “K obobschennoi zadache Valle-Pussena”, Differents. uravneniya, 23:11 (1987), 1861–1872 | MR

[12] Pokornyi Yu. V., Shurupova I. Yu., “Ob ostsillyatsionnykh svoistvakh spektra kraevoi zadachi s funktsiei Grina, menyayuschei znak”, Ukr. matem. zh., 41:11 (1989), 1521–1526 | MR

[13] Teptin A. L., “Ob ostsillyatsionnosti yadra, svyazannogo s funktsiei Grina odnoi mnogotochechnoi zadachi”, Differents. uravneniya, 26:2 (1990), 358–360 | Zbl

[14] Borovskikh A. V., Lazarev K. P., Pokornyi Yu. V., “Ob ostsillyatsionnykh spektralnykh svoistvakh razryvnykh kraevykh zadach”, Dokl. RAN, 335:4 (1994), 409–412 | MR | Zbl

[15] Borovskikh A. V., Pokornyi Yu. V., “Sistemy Chebysheva–Khaara v teorii razryvnykh yader Kelloga”, UMN, 49:3 (1994), 3–42 | MR | Zbl

[16] Borovskikh A. V., Lazarev K. P., Pokornyi Yu. V., “O yadrakh Kelloga v razryvnykh zadachakh”, Optimalnoe upravlenie i differentsialnye uravneniya, Tr. MIAN im. V. A. Steklova, 211, Nauka, M., 1995, 102–120 | MR

[17] Derr V. Ya., “O znake funktsii Grina obobschennoi zadachi Valle-Pussena”, Funktsionalno-differentsialnye uravneniya, PermPI, Perm, 1986, 35–41 | MR | Zbl

[18] Stepanov G. D., “Effektivnye kriterii silnoi znakoregulyarnosti i ostsillyatsionnoe svoistvo funktsii Grina dvukhtochechnykh kraevykh zadach”, Matem. sb., 188:11 (1997), 121–159 | MR | Zbl

[19] Polya G., “On the mean-value theorem corresponding to a given homogeneous differential equation”, Trans. Amer. Math. Soc., 24 (1922), 312–324 | DOI | MR

[20] Levin A. Yu., “Neostsillyatsiya reshenii uravneniya $x^{(n)}+ p_1(t)x^{(n-1)}+ \dots + p_n(t)x=0$”, UMN, 24:2 (1969), 43–96

[21] Hartman P., “On disconjugacy criteria”, Proc. Amer. Math. Soc., 24:2 (1970), 374–381 | DOI | MR | Zbl

[22] Polia G., Sege G., Zadachi i teoremy iz analiza, T. II, Nauka, M., 1978

[23] Kalafati P. D., “O funktsiyakh Grina obyknovennykh differentsialnykh uravnenii”, Dokl. AN SSSR, 26:6 (1940), 535–539