A Generalization of the Hilbert Basis Theorem
Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 508-516.

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalization of the Hilbert basis theorem in the geometric setting is proposed. It asserts that, for any well-describable (in a certain sense) family of polynomials, there exists a number $C$ such that if $P$ is an everywhere dense (in a certain sense) subfamily of this family, $a$ is an arbitrary point, and the first $C$ polynomials in any sequence from $P$ vanish at the point $a$, then all polynomials from $P$ vanish at $a$.
@article{MZM_2003_74_4_a3,
     author = {K. Yu. Gorbunov},
     title = {A {Generalization} of the {Hilbert} {Basis} {Theorem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {508--516},
     publisher = {mathdoc},
     volume = {74},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a3/}
}
TY  - JOUR
AU  - K. Yu. Gorbunov
TI  - A Generalization of the Hilbert Basis Theorem
JO  - Matematičeskie zametki
PY  - 2003
SP  - 508
EP  - 516
VL  - 74
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a3/
LA  - ru
ID  - MZM_2003_74_4_a3
ER  - 
%0 Journal Article
%A K. Yu. Gorbunov
%T A Generalization of the Hilbert Basis Theorem
%J Matematičeskie zametki
%D 2003
%P 508-516
%V 74
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a3/
%G ru
%F MZM_2003_74_4_a3
K. Yu. Gorbunov. A Generalization of the Hilbert Basis Theorem. Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 508-516. http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a3/

[1] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Laboratoriya bazovykh znanii, M., 2001

[2] Koks D., Littl Dzh., O'Shi D., Idealy, mnogoobraziya i algoritmy. Vvedenie v vychislitelnye aspekty algebraicheskoi geometrii i kommutativnoi algebry, Mir, M., 2000

[3] Vereschagin N. K., Shen A. Kh., Yazyki i ischisleniya, MTsNMO, M., 2000

[4] Shafarevich I. R., Osnovy algebraicheskoi geometrii, T. 1, Nauka, M., 1998 | MR