A Generalization of the Hilbert Basis Theorem
Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 508-516
Cet article a éte moissonné depuis la source Math-Net.Ru
A generalization of the Hilbert basis theorem in the geometric setting is proposed. It asserts that, for any well-describable (in a certain sense) family of polynomials, there exists a number $C$ such that if $P$ is an everywhere dense (in a certain sense) subfamily of this family, $a$ is an arbitrary point, and the first $C$ polynomials in any sequence from $P$ vanish at the point $a$, then all polynomials from $P$ vanish at $a$.
@article{MZM_2003_74_4_a3,
author = {K. Yu. Gorbunov},
title = {A {Generalization} of the {Hilbert} {Basis} {Theorem}},
journal = {Matemati\v{c}eskie zametki},
pages = {508--516},
year = {2003},
volume = {74},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a3/}
}
K. Yu. Gorbunov. A Generalization of the Hilbert Basis Theorem. Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 508-516. http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a3/
[1] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Laboratoriya bazovykh znanii, M., 2001
[2] Koks D., Littl Dzh., O'Shi D., Idealy, mnogoobraziya i algoritmy. Vvedenie v vychislitelnye aspekty algebraicheskoi geometrii i kommutativnoi algebry, Mir, M., 2000
[3] Vereschagin N. K., Shen A. Kh., Yazyki i ischisleniya, MTsNMO, M., 2000
[4] Shafarevich I. R., Osnovy algebraicheskoi geometrii, T. 1, Nauka, M., 1998 | MR