On Isomorphisms of Relations Embedded into Each Other
Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 573-589 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider analogs of the Cantor–Bernstein theorem for sets with binary relations. In Sec. 1, we prove an analog of this theorem for arbitrary binary relations; in Sec. 2, we consider an application; in Sec. 3, we study a class of relations with the “Cantor– Bernstein property” and a class of exact relations, and prove that these classes are closed under certain operations.
@article{MZM_2003_74_4_a10,
     author = {D. I. Saveliev},
     title = {On {Isomorphisms} of {Relations} {Embedded} into {Each} {Other}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {573--589},
     year = {2003},
     volume = {74},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a10/}
}
TY  - JOUR
AU  - D. I. Saveliev
TI  - On Isomorphisms of Relations Embedded into Each Other
JO  - Matematičeskie zametki
PY  - 2003
SP  - 573
EP  - 589
VL  - 74
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a10/
LA  - ru
ID  - MZM_2003_74_4_a10
ER  - 
%0 Journal Article
%A D. I. Saveliev
%T On Isomorphisms of Relations Embedded into Each Other
%J Matematičeskie zametki
%D 2003
%P 573-589
%V 74
%N 4
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a10/
%G ru
%F MZM_2003_74_4_a10
D. I. Saveliev. On Isomorphisms of Relations Embedded into Each Other. Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 573-589. http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a10/

[1] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970

[2] Tarski A., Ordinal Algebras, Amsterdam, 1956

[3] Tarski A., Cardinal Algebras, Oxford University Press, NY, 1949 | Zbl

[4] Dedekind R., Gesammelte mathematische Werke, Braunschweig, 1932 | Zbl

[5] Rosenstein J. G., Linear orderings, NY, 1982

[6] Sierpiński W., Cardinal and Ordinal Numbers, Warsaw, 1958

[7] Jónsson B., Appendix B to: Tarski A., Ordinal Algebras, Amsterdam, 1956 | Zbl

[8] Savelev D. I., “Samopodobnye lineino uporyadochennye mnozhestva” (to appear) | Zbl

[9] Ginsburg S., “Some remarks on order types and decompositions of sets”, Trans. Amer. Math. Soc., 74:3 (1953), 514–535 | DOI | MR | Zbl

[10] Ginsburg S., “Further results on order types and decompositions of sets”, Trans. Amer. Math. Soc., 77:1 (1954), 122–150 | DOI | MR

[11] Ginsburg S., “Fixed points of products and ordered sums of simply ordered sets”, Proc. Amer. Math. Soc., 5:4 (1954), 554–565 | DOI | MR | Zbl

[12] Ginsburg S., “Order types and similarity transformations”, Trans. Amer. Math. Soc., 79:2 (1955), 341–361 | DOI | MR | Zbl

[13] Savelev D. I., “O poryadkovykh tipakh mnozhestv deistvitelnykh chisel” (to appear) | Zbl

[14] Gillman L., “A continuous exact set”, Proc. Amer. Math. Soc., 9:3 (1958), 412–418 | DOI | MR | Zbl

[15] Sherrie N., “Continuous and exact sets of specified cardinality”, Zeit. Math. Log. Grundlag. Math., 35 (1989), 211–224 | DOI | MR

[16] Lévy A., Basic Set Theory, Jerusalem, 1978

[17] Lindenbaum A., Tarski A., “Communication sur les recherches de la théorie des ensembles”, C. R. Sci. Varsovie, III, 19 (1926), 299–330