Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2003_74_4_a1, author = {R. Garunkstis and A. P. Laurincikas and J. Steuding}, title = {An {Approximate} {Functional} {Equation} for the {Lerch} {Zeta} {Function}}, journal = {Matemati\v{c}eskie zametki}, pages = {494--501}, publisher = {mathdoc}, volume = {74}, number = {4}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a1/} }
TY - JOUR AU - R. Garunkstis AU - A. P. Laurincikas AU - J. Steuding TI - An Approximate Functional Equation for the Lerch Zeta Function JO - Matematičeskie zametki PY - 2003 SP - 494 EP - 501 VL - 74 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a1/ LA - ru ID - MZM_2003_74_4_a1 ER -
R. Garunkstis; A. P. Laurincikas; J. Steuding. An Approximate Functional Equation for the Lerch Zeta Function. Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 494-501. http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a1/
[1] Lerch M., “Note sur la function $\mathscr K(z,x,s)=\sum_{k=0}^\infty e^{2k\pi ix}(z+k)^{-s}$”, Acta Math., 11 (1887), 19–24 | DOI
[2] Hurwitz A., “Einige Eigenschaften der Dirichletschen Funktionen $F(s)=\sum\bigl(\frac Dn\bigr)\frac1{n^s}$, die bei der Bestimmung der Klassenzahlen binärer quadratischer Formen auftreten”, Z. Math. Phys., 27 (1887), 86–101
[3] Voronin S. M., Karatsuba A. A., Dzeta-funktsiya Rimana, Fizmatlit, M., 1994
[4] Siegel C. L., “Über Riemanns Nachlass zur analytischen Zahlentheorie”, Quellen, Studien, Geschichte der Mathematik, Astronomie und Physik, Abt. B: Studien, 2 (1932), 45–80 | Zbl
[5] Titchmarsh E. C., The Theory of the Riemann Zeta-Function, 2nd ed., ed. D. R. Heath-Brown, Oxford University Press, Oxford, 1986 | Zbl
[6] Rane V. V., “On the mean square value of Dirichlet L-series”, J. London Math. Soc. (2), 21 (1980), 203–215 | DOI | MR | Zbl
[7] Garunkštis R., Laurinčikas A., “On the Lerch zeta-function”, Lith. Math. J., 36:4 (1996), 337–346 | DOI | MR | Zbl