An Approximate Functional Equation for the Lerch Zeta Function
Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 494-501.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we establish an approximate functional equation for the Lerch zeta function, which is a generalization of the Riemann zeta function and the Hurwitz zeta function.
@article{MZM_2003_74_4_a1,
     author = {R. Garunkstis and A. P. Laurincikas and J. Steuding},
     title = {An {Approximate} {Functional} {Equation} for the {Lerch} {Zeta} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {494--501},
     publisher = {mathdoc},
     volume = {74},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a1/}
}
TY  - JOUR
AU  - R. Garunkstis
AU  - A. P. Laurincikas
AU  - J. Steuding
TI  - An Approximate Functional Equation for the Lerch Zeta Function
JO  - Matematičeskie zametki
PY  - 2003
SP  - 494
EP  - 501
VL  - 74
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a1/
LA  - ru
ID  - MZM_2003_74_4_a1
ER  - 
%0 Journal Article
%A R. Garunkstis
%A A. P. Laurincikas
%A J. Steuding
%T An Approximate Functional Equation for the Lerch Zeta Function
%J Matematičeskie zametki
%D 2003
%P 494-501
%V 74
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a1/
%G ru
%F MZM_2003_74_4_a1
R. Garunkstis; A. P. Laurincikas; J. Steuding. An Approximate Functional Equation for the Lerch Zeta Function. Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 494-501. http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a1/

[1] Lerch M., “Note sur la function $\mathscr K(z,x,s)=\sum_{k=0}^\infty e^{2k\pi ix}(z+k)^{-s}$”, Acta Math., 11 (1887), 19–24 | DOI

[2] Hurwitz A., “Einige Eigenschaften der Dirichletschen Funktionen $F(s)=\sum\bigl(\frac Dn\bigr)\frac1{n^s}$, die bei der Bestimmung der Klassenzahlen binärer quadratischer Formen auftreten”, Z. Math. Phys., 27 (1887), 86–101

[3] Voronin S. M., Karatsuba A. A., Dzeta-funktsiya Rimana, Fizmatlit, M., 1994

[4] Siegel C. L., “Über Riemanns Nachlass zur analytischen Zahlentheorie”, Quellen, Studien, Geschichte der Mathematik, Astronomie und Physik, Abt. B: Studien, 2 (1932), 45–80 | Zbl

[5] Titchmarsh E. C., The Theory of the Riemann Zeta-Function, 2nd ed., ed. D. R. Heath-Brown, Oxford University Press, Oxford, 1986 | Zbl

[6] Rane V. V., “On the mean square value of Dirichlet L-series”, J. London Math. Soc. (2), 21 (1980), 203–215 | DOI | MR | Zbl

[7] Garunkštis R., Laurinčikas A., “On the Lerch zeta-function”, Lith. Math. J., 36:4 (1996), 337–346 | DOI | MR | Zbl