Characterization of Generating Ideals in Some Rings of Entire Functions
Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 483-493.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E$ be a ring of entire functions on $\mathbb C^N$ with the operation of pointwise multiplication, and let $f_1,\dots,f_m$ be a set of nonzero elements in $E$. The ideal $E(f_1,\dots,f_m)$ in $E$ with generators $f_1,\dots,f_m$ is said to be generating if $E(f_1,\dots,f_m) = E$. The generating ideals in rings of entire functions on $\mathbb C^N$ determined by the growth of their maximum moduli are characterized in terms of the distribution of the zero sets of their generators. Under the additional condition of rapid variation of the weight sequences determining the ring, criteria for generating ideals are established; they are stated in terms of $d(z):=\max_{1\le j\le m}d_j(z)$, where $d_j(z)$ is the distance from a point $z\in\mathbb C^N$ to the zero set of $f_j$, $1\le j\le m$. It is shown that, in rings of entire functions of finite or minimal type with respect to a given order, a similar characterization (i.e., in terms of $d(z)$) cannot be given.
@article{MZM_2003_74_4_a0,
     author = {A. V. Abanin and I. S. Shabarshina},
     title = {Characterization of {Generating} {Ideals} in {Some} {Rings} of {Entire} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--493},
     publisher = {mathdoc},
     volume = {74},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a0/}
}
TY  - JOUR
AU  - A. V. Abanin
AU  - I. S. Shabarshina
TI  - Characterization of Generating Ideals in Some Rings of Entire Functions
JO  - Matematičeskie zametki
PY  - 2003
SP  - 483
EP  - 493
VL  - 74
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a0/
LA  - ru
ID  - MZM_2003_74_4_a0
ER  - 
%0 Journal Article
%A A. V. Abanin
%A I. S. Shabarshina
%T Characterization of Generating Ideals in Some Rings of Entire Functions
%J Matematičeskie zametki
%D 2003
%P 483-493
%V 74
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a0/
%G ru
%F MZM_2003_74_4_a0
A. V. Abanin; I. S. Shabarshina. Characterization of Generating Ideals in Some Rings of Entire Functions. Matematičeskie zametki, Tome 74 (2003) no. 4, pp. 483-493. http://geodesic.mathdoc.fr/item/MZM_2003_74_4_a0/

[1] Carleson L., “Interpolation by bounded analytic functions and the corona problem”, Ann. of Math., 76:3 (1962), 547–559 | DOI | MR | Zbl

[2] Kelleher J. J., Taylor B. A., “An application of the corona theorem to some rings of entire functions”, Bull. Amer. Math. Soc., 73:2 (1967), 246–249 | DOI | MR | Zbl

[3] Hörmander L., “Generators for some rings of analytic functions”, Bull. Amer. Math. Soc., 73:6 (1967), 943–949 | DOI | MR | Zbl

[4] Kelleher J. J., Taylor B. A., “Closed ideals in locally convex algebras of analytic functions”, J. Reine Angew. Math., 255 (1972), 190–209 | MR | Zbl

[5] Scoda H., “Application des techniques $L^2$ a la théorie des idéaux d'une algèbre de fonctions holomorphes avec poids”, Ann. Sci. École Norm. Sup. (4), 5:4 (1972), 545–579 | MR

[6] Hennekemper W., “Über Differentialideale im Ring der ganzen Funktionen endlicher Wachstumsordnung”, Arch. Math., 46 (1986), 250–256 | DOI | MR | Zbl

[7] Ronkin L. I., “Tselye funktsii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 9, VINITI, M., 1986, 5–36 | MR

[8] Ronkin L. I., Vvedenie v teoriyu tselykh funktsii mnogikh peremennykh, Nauka, M., 1971 | Zbl

[9] Lelon P., Gruman L., Tselye funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1989 | Zbl

[10] Timofeev A. Ju., “Die Differentialideale im Ring der ganzen Funktionen, die bei vorgegebener Ordnung Minimaltyp besitzen”, Math. Nachr., 147 (1990), 89–94 | MR | Zbl