Steiner Ratio for Manifolds
Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 387-395
Voir la notice de l'article provenant de la source Math-Net.Ru
The Steiner ratio characterizes the greatest possible deviation of the length of a minimal spanning tree from the length of the minimal Steiner tree. In this paper, estimates of the Steiner ratio on Riemannian manifolds are obtained. As a corollary, the Steiner ratio for flat tori, flat Klein bottles, and projective plane of constant positive curvature are computed.
@article{MZM_2003_74_3_a6,
author = {A. O. Ivanov and A. A. Tuzhilin and D. Cieslik},
title = {Steiner {Ratio} for {Manifolds}},
journal = {Matemati\v{c}eskie zametki},
pages = {387--395},
publisher = {mathdoc},
volume = {74},
number = {3},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a6/}
}
A. O. Ivanov; A. A. Tuzhilin; D. Cieslik. Steiner Ratio for Manifolds. Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 387-395. http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a6/