Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2003_74_3_a6, author = {A. O. Ivanov and A. A. Tuzhilin and D. Cieslik}, title = {Steiner {Ratio} for {Manifolds}}, journal = {Matemati\v{c}eskie zametki}, pages = {387--395}, publisher = {mathdoc}, volume = {74}, number = {3}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a6/} }
A. O. Ivanov; A. A. Tuzhilin; D. Cieslik. Steiner Ratio for Manifolds. Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 387-395. http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a6/
[1] Du D. Z., Hwang F. K., “A proof of Gilbert–Pollak Conjecture on the Steiner ratio”, Algorithmica, 7 (1992), 121–135 | DOI | MR | Zbl
[2] Gilbert E. N., Pollak H. O., “Steiner minimal trees”, SIAM J. Appl. Math., 16:1 (1968), 1–29 | DOI | MR | Zbl
[3] Cieslik D., Steiner Minimal Trees, Kluwer Academic Publishers, 1998
[4] Rubinstein J. H., Weng J. F., “Compression theorems and Steiner ratios on spheres”, J. Combin. Optimization, 1 (1997), 67–78 | DOI | MR | Zbl
[5] Ivanov A. O., Tuzhilin A. A., Minimal Networks. The Steiner Problem and Its Generalizations, CRC Press, N.W., Boca Raton, Florida, 1994 | Zbl
[6] Ivanov A. O., Tuzhilin A. A., Branching Solutions of One-Dimensional Variational Problems, World Publisher Press, 2000 (to appear)
[7] Hwang F. K., Richards D., Winter P., The Steiners Tree Problem, Elsevier Science Publishers, 1992