A Subspace of Hölder Space Consisting Only of Nonsmoothest Functions
Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 329-339.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the first part of this paper, we give a complete answer to an old question of the geometric theory of Banach spaces; namely, we construct an infinite-dimensional closed subspace of Hölder space such that each function not identically zero is not smoother at each point than the nonsmoothest function in Hölder space. In the second part, using constructions from the first part, we show that the set of functions from Hölder space which are smoother on a set of positive measure than the nonsmoothest function is a set of first category in this space.
@article{MZM_2003_74_3_a1,
     author = {E. I. Berezhnoi},
     title = {A {Subspace} of {H\"older} {Space} {Consisting} {Only} of {Nonsmoothest} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {329--339},
     publisher = {mathdoc},
     volume = {74},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a1/}
}
TY  - JOUR
AU  - E. I. Berezhnoi
TI  - A Subspace of Hölder Space Consisting Only of Nonsmoothest Functions
JO  - Matematičeskie zametki
PY  - 2003
SP  - 329
EP  - 339
VL  - 74
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a1/
LA  - ru
ID  - MZM_2003_74_3_a1
ER  - 
%0 Journal Article
%A E. I. Berezhnoi
%T A Subspace of Hölder Space Consisting Only of Nonsmoothest Functions
%J Matematičeskie zametki
%D 2003
%P 329-339
%V 74
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a1/
%G ru
%F MZM_2003_74_3_a1
E. I. Berezhnoi. A Subspace of Hölder Space Consisting Only of Nonsmoothest Functions. Matematičeskie zametki, Tome 74 (2003) no. 3, pp. 329-339. http://geodesic.mathdoc.fr/item/MZM_2003_74_3_a1/

[1] Fonf V. P., Gurariy V. I., Kadets M. I., “An infinite-dimensional subspace $C[0,1]$ consisting of nowhere differentiable functions”, Comp. Rend. Acad. Bulg. Sci., 52:11–12 (1999), 13–16 | MR | Zbl

[2] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965

[3] Petrushev P. P., Troyanski S. L., “O teoreme Banakha–Mazura ob universalnosti $C[0, 1]$”, Comp. Rend. Acad. Bulg. Sci., 37:3 (1984), 283–285 | MR | Zbl

[4] Gurarii V. I., “Lineinoe prostranstvo sostoyaschee iz vsyudu nedifferentsiruemykh funktsii”, Comp. Rend. Acad. Bulg. Sci., 44:5 (1991), 13–15 | MR

[5] Rodriguez-Piazza I., “Every separable Banach space is isometric to a space of continuous nowhere differentiable functions”, Proc. Amer. Math. Soc., 123:12 (1995), 3650–3654 | DOI | MR

[6] Goffman C., “Approximation of non-parametric surfaces of finite area”, J. Math. Mech., 12 (1963), 737–745 | MR | Zbl

[7] Mikheev I. M., “Odno svoistvo funktsii, predstavimykh lakunarnymi ryadami Fure”, Vestn. Mosk. un-ta. Matem.-mekh., 1972, no. 5, 67–71 | Zbl

[8] Berezhnoi E. I., “Otsenki ravnomernogo modulya nepreryvnosti funktsii iz simmetrichnykh prostranstv”, Izv. RAN. Ser. matem., 60:2 (1996), 3–20 | MR

[9] Ulyanov P. L., “O rabotakh N. N. Luzina po metricheskoi teorii funktsii”, UMN, 40:3 (1985), 15–70 | MR | Zbl

[10] Brudnyi Yu., Krugljak N., Interpolation Functors and Interpolation Spaces, V. 1, North-Holland, 1991 | Zbl