On a Result of Telyakovskii and Multiple Hilbert Transforms with Polynomial Phases
Matematičeskie zametki, Tome 74 (2003) no. 2, pp. 242-256.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove a multiple analog of the theorem proved by Arkhipov and the author in 1987, which provides an estimate for the discrete Hilbert transform with polynomial phase. For the linear case, the corresponding estimates of the sum of multiple trigonometric series was proved by Telyakovskii.
@article{MZM_2003_74_2_a6,
     author = {K. I. Oskolkov},
     title = {On a {Result} of {Telyakovskii} and {Multiple} {Hilbert} {Transforms} with {Polynomial} {Phases}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {242--256},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a6/}
}
TY  - JOUR
AU  - K. I. Oskolkov
TI  - On a Result of Telyakovskii and Multiple Hilbert Transforms with Polynomial Phases
JO  - Matematičeskie zametki
PY  - 2003
SP  - 242
EP  - 256
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a6/
LA  - ru
ID  - MZM_2003_74_2_a6
ER  - 
%0 Journal Article
%A K. I. Oskolkov
%T On a Result of Telyakovskii and Multiple Hilbert Transforms with Polynomial Phases
%J Matematičeskie zametki
%D 2003
%P 242-256
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a6/
%G ru
%F MZM_2003_74_2_a6
K. I. Oskolkov. On a Result of Telyakovskii and Multiple Hilbert Transforms with Polynomial Phases. Matematičeskie zametki, Tome 74 (2003) no. 2, pp. 242-256. http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a6/

[1] Telyakovskii S. A., “Ob otsenkakh proizvodnykh trigonometricheskikh polinomov mnogikh peremennykh”, Sib. matem. zh., 4:6 (1963), 1404–1411

[2] Telyakovskii S. A., “Ravnomernaya ogranichennost nekotorykh trigonometricheskikh polinomov mnogikh peremennykh”, Matem. zametki, 42:1 (1987), 33–39 | MR | Zbl

[3] Telyakovskii S. A., Temlyakov V. N., “O skhodimosti ryadov Fure mnogikh peremennykh ogranichennoi variatsii”, Matem. zametki, 61:4 (1997), 583–591 | MR

[4] Arkhipov G. I., Oskolkov K. I., “Ob odnom spetsialnom trigonometricheskom ryade i ego primeneniyakh”, Matem. sb., 134 (176):2 (10) (1987), 147–157

[5] Vinogradov I. M., Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1971

[6] Stein E., Wainger S., “Discrete analogues of singular Radon transforms”, Bull. Amer. Math. Soc., 23 (1990), 537–544 | DOI | MR | Zbl

[7] Oskolkov K. I., “A class of I. M. Vinogradov's series and its applications in harmonic analysis”, Progress in Approximation Theory, International Prospective Proceedings of the International Conference on Approximation Theory (March 19–22, 1990, University of South Florida), Springer-Verlag, 1992, 353–402 | MR | Zbl

[8] Oskolkov K. I., “Schrödinger equation and oscillatory Hilbert transforms of second degree”, J. Fourier Anal. Appl., 4 (1998), 341–356 | DOI | MR | Zbl

[9] Oskolkov K. I., “Ryady I. M. Vinogradova v zadache Koshi dlya uravneniya Shredingera”, Tr. MIAN, 200, Nauka, M., 1991, 265–288 | Zbl

[10] Zygmund A., Trigonometric series, Second Edition, Cambridge University Press, Cambridge, 1959 | Zbl

[11] Garaev M. Z., “On a multiple trigonometric series”, Acta Arithm., 102:2 (2002), 183–187 | DOI | MR | Zbl

[12] Stein E., Wainger S., “The estimation of an integral arising in multiplier transformations”, Studia Math., 35 (1970), 101–104 | MR | Zbl

[13] Stein E., Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993 | Zbl

[14] Weyl H., “Über die Gleichverteilung von Zahlen $\bmod$ Eins”, Math. Ann., 77 (1916), 313–352 | DOI | MR

[15] Jing-run Chen, “On Professor Hua's estimate of exponential sum”, Sci. Sinica, 20 (1977), 711–719 | MR

[16] Stechkin S. B., “Otsenka polnoi ratsionalnoi trigonometricheskoi summy”, Tr. MIAN, 143, Nauka, M., 1977, 188–207 | MR | Zbl

[17] Arkhipov G. I., “O probleme Gilberta–Kamke”, Izv. AN SSSR. Ser. matem., 48:1 (1984), 3–52 | MR | Zbl