Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2003_74_2_a3, author = {A. F. Grishin}, title = {The {Simplest} {Tauberian} {Theorem}}, journal = {Matemati\v{c}eskie zametki}, pages = {221--229}, publisher = {mathdoc}, volume = {74}, number = {2}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a3/} }
A. F. Grishin. The Simplest Tauberian Theorem. Matematičeskie zametki, Tome 74 (2003) no. 2, pp. 221-229. http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a3/
[1] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956
[2] Grishin A. F., Malyutina T. I., “Ob utochnennom poryadke”, Kompleksnyi analiz i matematicheskaya fizika, Krasnoyarsk, 1998, 10–24
[3] Valiron G., “Sur les fonctions entières d'ordre fini et d'ordre nul, et en particulier les fonctions à correspondence régulière”, Ann. Faculté Sci. Univ. Toulouse, 1913, no. 5, 117–257 | MR
[4] Karamata J., “Sur un mode de croissance régulière des fonctions”, Mathematica (Clyj), 1930, no. 4, 38–53
[5] de Haan L., On Regular Variations and Its Applications to the Weak Convergence of Sample Extremes, Math. Centre Tract., 32, Amsterdam, 1970
[6] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | Zbl
[7] Bingham N. H., Goldie C. H., Teugels J. L., Regular Variation, Cambridge Univ. Press, Cambridge, 1987 | Zbl
[8] Goldberg A. A., “Integral po poluadditivnoi mere i ego prilozhenie k teorii tselykh funktsii. III”, Matem. sb., 65(107):3 (1964), 414–453 | MR
[9] Schmidt R., “Über divergente Folgen und lineare Mittelbildungen”, Mat. Z., 1925, no. 22, 89–152 | DOI
[10] Postnikov A. G., Tauberova teoriya i ee prilozheniya, Nauka, M., 1979
[11] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1984 | Zbl
[12] Khardi G., Raskhodyaschiesya ryady, IL, M., 1951