The Simplest Tauberian Theorem
Matematičeskie zametki, Tome 74 (2003) no. 2, pp. 221-229.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following problem is considered: obtain the asymptotic properties of a function $u$ from the asymptotic properties of the integral $\int_0^r{u(t)}dt$. As is well known, this can be done under additional constraints on the function $u(t)$. In this paper, we obtain a theorem in which these constraints are weaker than in other well-known versions of such theorems.
@article{MZM_2003_74_2_a3,
     author = {A. F. Grishin},
     title = {The {Simplest} {Tauberian} {Theorem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {221--229},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a3/}
}
TY  - JOUR
AU  - A. F. Grishin
TI  - The Simplest Tauberian Theorem
JO  - Matematičeskie zametki
PY  - 2003
SP  - 221
EP  - 229
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a3/
LA  - ru
ID  - MZM_2003_74_2_a3
ER  - 
%0 Journal Article
%A A. F. Grishin
%T The Simplest Tauberian Theorem
%J Matematičeskie zametki
%D 2003
%P 221-229
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a3/
%G ru
%F MZM_2003_74_2_a3
A. F. Grishin. The Simplest Tauberian Theorem. Matematičeskie zametki, Tome 74 (2003) no. 2, pp. 221-229. http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a3/

[1] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[2] Grishin A. F., Malyutina T. I., “Ob utochnennom poryadke”, Kompleksnyi analiz i matematicheskaya fizika, Krasnoyarsk, 1998, 10–24

[3] Valiron G., “Sur les fonctions entières d'ordre fini et d'ordre nul, et en particulier les fonctions à correspondence régulière”, Ann. Faculté Sci. Univ. Toulouse, 1913, no. 5, 117–257 | MR

[4] Karamata J., “Sur un mode de croissance régulière des fonctions”, Mathematica (Clyj), 1930, no. 4, 38–53

[5] de Haan L., On Regular Variations and Its Applications to the Weak Convergence of Sample Extremes, Math. Centre Tract., 32, Amsterdam, 1970

[6] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | Zbl

[7] Bingham N. H., Goldie C. H., Teugels J. L., Regular Variation, Cambridge Univ. Press, Cambridge, 1987 | Zbl

[8] Goldberg A. A., “Integral po poluadditivnoi mere i ego prilozhenie k teorii tselykh funktsii. III”, Matem. sb., 65(107):3 (1964), 414–453 | MR

[9] Schmidt R., “Über divergente Folgen und lineare Mittelbildungen”, Mat. Z., 1925, no. 22, 89–152 | DOI

[10] Postnikov A. G., Tauberova teoriya i ee prilozheniya, Nauka, M., 1979

[11] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1984 | Zbl

[12] Khardi G., Raskhodyaschiesya ryady, IL, M., 1951