The Simplest Tauberian Theorem
Matematičeskie zametki, Tome 74 (2003) no. 2, pp. 221-229

Voir la notice de l'article provenant de la source Math-Net.Ru

The following problem is considered: obtain the asymptotic properties of a function $u$ from the asymptotic properties of the integral $\int_0^r{u(t)}dt$. As is well known, this can be done under additional constraints on the function $u(t)$. In this paper, we obtain a theorem in which these constraints are weaker than in other well-known versions of such theorems.
@article{MZM_2003_74_2_a3,
     author = {A. F. Grishin},
     title = {The {Simplest} {Tauberian} {Theorem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {221--229},
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a3/}
}
TY  - JOUR
AU  - A. F. Grishin
TI  - The Simplest Tauberian Theorem
JO  - Matematičeskie zametki
PY  - 2003
SP  - 221
EP  - 229
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a3/
LA  - ru
ID  - MZM_2003_74_2_a3
ER  - 
%0 Journal Article
%A A. F. Grishin
%T The Simplest Tauberian Theorem
%J Matematičeskie zametki
%D 2003
%P 221-229
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a3/
%G ru
%F MZM_2003_74_2_a3
A. F. Grishin. The Simplest Tauberian Theorem. Matematičeskie zametki, Tome 74 (2003) no. 2, pp. 221-229. http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a3/