The Simplest Tauberian Theorem
Matematičeskie zametki, Tome 74 (2003) no. 2, pp. 221-229
Voir la notice de l'article provenant de la source Math-Net.Ru
The following problem is considered: obtain the asymptotic properties of a function $u$ from the asymptotic properties of the integral $\int_0^r{u(t)}dt$. As is well known, this can be done under additional constraints on the function $u(t)$. In this paper, we obtain a theorem in which these constraints are weaker than in other well-known versions of such theorems.
@article{MZM_2003_74_2_a3,
author = {A. F. Grishin},
title = {The {Simplest} {Tauberian} {Theorem}},
journal = {Matemati\v{c}eskie zametki},
pages = {221--229},
publisher = {mathdoc},
volume = {74},
number = {2},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a3/}
}
A. F. Grishin. The Simplest Tauberian Theorem. Matematičeskie zametki, Tome 74 (2003) no. 2, pp. 221-229. http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a3/