Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2003_74_2_a1, author = {A. A. Bolibrukh}, title = {On the {Tau} {Function} for the {Schlesinger} {Equation} of {Isomonodromic} {Deformations}}, journal = {Matemati\v{c}eskie zametki}, pages = {184--191}, publisher = {mathdoc}, volume = {74}, number = {2}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a1/} }
A. A. Bolibrukh. On the Tau Function for the Schlesinger Equation of Isomonodromic Deformations. Matematičeskie zametki, Tome 74 (2003) no. 2, pp. 184-191. http://geodesic.mathdoc.fr/item/MZM_2003_74_2_a1/
[1] Bolibrukh A. A., “Ob izomonodromnykh sliyaniyakh fuksovykh osobennostei”, Tr. MIAN, 221, Nauka, M., 1998, 127–142 | MR | Zbl
[2] Malgrange B., “Sur les déformations isomonodromiques. I: Singularités régulières”, Progr. Math., 37 (1983), 401–426 | MR | Zbl
[3] Bolibruch A. A., “On orders of movable poles of the Schlesinger equation”, J. Dynam. Control Systems, 6:1 (2000), 57–74 | DOI | MR
[4] Jimbo M., Miwa T., “Monodromy preserving deformations of linear ordinary differential equations, II”, Phys. D, 2 (1981), 407–448 | DOI | MR
[5] Okonek K., Shneider M., Shpindler Kh., Vektornye rassloeniya na kompleksnom proektivnom prostranstve, Mir, M., 1984 | Zbl
[6] Bolibruch A. A., “Vector bundles associated with monodromies and asymptotics of Fuchsian systems”, J. Dynam. Control Systems, 1:1 (1995), 229–252 | DOI | MR | Zbl