Uniform Approximation of Functions by Polynomial Solutions to Second-Order Elliptic Equations on Compact Sets in $\mathbb{R}^2$
Matematičeskie zametki, Tome 74 (2003) no. 1, pp. 41-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study necessary and sufficient conditions for functions to be approximated uniformly on plane compact sets by polynomial solutions to second-order homogeneous elliptic equations with constant coefficients. Sufficient conditions for approximability are of reductive character, i.e., the possibility of approximating on some (simpler) parts of the compact set implies approximability on the entire compact set.
@article{MZM_2003_74_1_a4,
     author = {A. B. Zaitsev},
     title = {Uniform {Approximation} of {Functions} by {Polynomial} {Solutions} to {Second-Order} {Elliptic} {Equations} on {Compact} {Sets} in $\mathbb{R}^2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {41--51},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a4/}
}
TY  - JOUR
AU  - A. B. Zaitsev
TI  - Uniform Approximation of Functions by Polynomial Solutions to Second-Order Elliptic Equations on Compact Sets in $\mathbb{R}^2$
JO  - Matematičeskie zametki
PY  - 2003
SP  - 41
EP  - 51
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a4/
LA  - ru
ID  - MZM_2003_74_1_a4
ER  - 
%0 Journal Article
%A A. B. Zaitsev
%T Uniform Approximation of Functions by Polynomial Solutions to Second-Order Elliptic Equations on Compact Sets in $\mathbb{R}^2$
%J Matematičeskie zametki
%D 2003
%P 41-51
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a4/
%G ru
%F MZM_2003_74_1_a4
A. B. Zaitsev. Uniform Approximation of Functions by Polynomial Solutions to Second-Order Elliptic Equations on Compact Sets in $\mathbb{R}^2$. Matematičeskie zametki, Tome 74 (2003) no. 1, pp. 41-51. http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a4/

[1] Zaitsev A. B., “O ravnomernoi priblizhaemosti funktsii polinomami spetsialnykh klassov na kompaktakh v $\mathbb{R}^2$”, Matem. zametki, 71:1 (2002), 75–87 | MR | Zbl

[2] Paramonov P. V., Fedorovskii K. Yu., “O ravnomernoi i $C^1$-priblizhaemosti funktsii na kompaktakh v $\mathbb{R}^2$ resheniyami ellipticheskikh uravnenii vtorogo poryadka”, Matem. sb., 190:2 (1999), 123–144 | MR | Zbl

[3] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. Funktsionalnyi analiz, Mir, M., 1977 | MR

[4] Gamelin T., Ravnomernye algebry, Mir, M., 1973 | Zbl

[5] Bishop E., “Granichnye mery analiticheskikh differentsialov”, Nekotorye voprosy teorii priblizhenii, IL, M., 1963, 87–100

[6] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[7] Fedorovskii K. Yu., “O ravnomernykh priblizheniyakh funktsii $n$-analiticheskimi polinomami na spryamlyaemykh konturakh v $\mathbb C$”, Matem. zametki, 59:4 (1996), 604–610 | MR | Zbl

[8] Carmona J. J., Fedorovski K. Yu., Paramonov P. V., On Uniform Approximation by Polyanalytic Polynomials and the Dirichlet Problem for Bianalytic Functions, Preprint No 415, Centre de Recerca Matematica, Barcelona, Spain, 1999 | MR

[9] Paramonov P. V., Verdera J., “Approximation by solutions of elliptic equations on closed subsets of euclidean space”, Math. Scand., 74:2 (1994), 249–259 | MR | Zbl

[10] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR | Zbl