Norms on $L$ of Periodic Interpolation Splines with Equidistant Nodes
Matematičeskie zametki, Tome 74 (2003) no. 1, pp. 108-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the set $S_{r,n}$ of periodic (with period 1) splines of degree $r$ with deficiency 1 whose nodes are at $n$ equidistant points $x_i=i / n$. For $n$-tuples $\mathbf y=(y_0, y_1, \dots,y_{n-1})$, we take splines $s_{r,n}(\mathbf y, x)$ from $S_{r,n}$ solving the interpolation problem $$ s_{r, n} (\mathbf y, t_i)=y_i, $$ where $t_i = x_i$ if $r$ is odd and $t_i$ is the middle of the closed interval $[x_i , x_{i+1}]$ if $r$ is even. For the norms $L_{r,n}^*$ of the operator $\mathbf y\to s_{r,n} (\mathbf y, x)$ treated as an operator from $l^1$ to $L^1 [0,1]$ we establish the estimate $$ L_{r, n}^*=\frac{4}{\pi^2 n} \log \min (r, n)+O\biggl(\frac{1}{n} \biggr) $$ with an absolute constant in the remainder. We study the relationship between the norms $L_{r,n}^*$ and the norms of similar operators for nonperiodic splines.
@article{MZM_2003_74_1_a11,
     author = {Yu. N. Subbotin and S. A. Telyakovskii},
     title = {Norms on $L$ of {Periodic} {Interpolation} {Splines} with {Equidistant} {Nodes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {108--117},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a11/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
AU  - S. A. Telyakovskii
TI  - Norms on $L$ of Periodic Interpolation Splines with Equidistant Nodes
JO  - Matematičeskie zametki
PY  - 2003
SP  - 108
EP  - 117
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a11/
LA  - ru
ID  - MZM_2003_74_1_a11
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%A S. A. Telyakovskii
%T Norms on $L$ of Periodic Interpolation Splines with Equidistant Nodes
%J Matematičeskie zametki
%D 2003
%P 108-117
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a11/
%G ru
%F MZM_2003_74_1_a11
Yu. N. Subbotin; S. A. Telyakovskii. Norms on $L$ of Periodic Interpolation Splines with Equidistant Nodes. Matematičeskie zametki, Tome 74 (2003) no. 1, pp. 108-117. http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a11/

[1] Subbotin Yu. N., Telyakovskii S. A., “Asimptotika konstant Lebega periodicheskikh interpolyatsionnykh splainov s ravnootstoyaschimi uzlami”, Matem. sb., 191:8 (2000), 131–140 | MR | Zbl

[2] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Fizmatgiz, M., 1976

[3] Zhensykbaev A. A., “Tochnye otsenki ravnomernogo priblizheniya nepreryvnykh periodicheskikh funktsii splainami $r$-go poryadka”, Matem. zametki, 13:2 (1973), 217–228 | MR | Zbl

[4] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1962

[5] Marsden M. J., Richards F. B., Riemenschneider S. D., “Cardinal spline interpolation operators on $l^p$ data”, Indiana University Math. J., 24 (1975), 677–689 | DOI | MR | Zbl

[6] Schoenberg I. J., “Cardinal interpolation and spline functions”, J. Approx. Theory, 2 (1969), 167–206 | DOI | MR | Zbl

[7] Subbotin Yu. N., “O svyazi mezhdu konechnymi raznostyami i sootvetstvuyuschimi proizvodnymi”, Tr. MIAN, 78, Nauka, M., 1965, 24–42 | MR | Zbl