Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2003_74_1_a11, author = {Yu. N. Subbotin and S. A. Telyakovskii}, title = {Norms on $L$ of {Periodic} {Interpolation} {Splines} with {Equidistant} {Nodes}}, journal = {Matemati\v{c}eskie zametki}, pages = {108--117}, publisher = {mathdoc}, volume = {74}, number = {1}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a11/} }
TY - JOUR AU - Yu. N. Subbotin AU - S. A. Telyakovskii TI - Norms on $L$ of Periodic Interpolation Splines with Equidistant Nodes JO - Matematičeskie zametki PY - 2003 SP - 108 EP - 117 VL - 74 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a11/ LA - ru ID - MZM_2003_74_1_a11 ER -
Yu. N. Subbotin; S. A. Telyakovskii. Norms on $L$ of Periodic Interpolation Splines with Equidistant Nodes. Matematičeskie zametki, Tome 74 (2003) no. 1, pp. 108-117. http://geodesic.mathdoc.fr/item/MZM_2003_74_1_a11/
[1] Subbotin Yu. N., Telyakovskii S. A., “Asimptotika konstant Lebega periodicheskikh interpolyatsionnykh splainov s ravnootstoyaschimi uzlami”, Matem. sb., 191:8 (2000), 131–140 | MR | Zbl
[2] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Fizmatgiz, M., 1976
[3] Zhensykbaev A. A., “Tochnye otsenki ravnomernogo priblizheniya nepreryvnykh periodicheskikh funktsii splainami $r$-go poryadka”, Matem. zametki, 13:2 (1973), 217–228 | MR | Zbl
[4] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1962
[5] Marsden M. J., Richards F. B., Riemenschneider S. D., “Cardinal spline interpolation operators on $l^p$ data”, Indiana University Math. J., 24 (1975), 677–689 | DOI | MR | Zbl
[6] Schoenberg I. J., “Cardinal interpolation and spline functions”, J. Approx. Theory, 2 (1969), 167–206 | DOI | MR | Zbl
[7] Subbotin Yu. N., “O svyazi mezhdu konechnymi raznostyami i sootvetstvuyuschimi proizvodnymi”, Tr. MIAN, 78, Nauka, M., 1965, 24–42 | MR | Zbl