Ovoids and Bipartite Subgraphs in Generalized Quadrangles
Matematičeskie zametki, Tome 73 (2003) no. 6, pp. 878-885
Voir la notice de l'article provenant de la source Math-Net.Ru
A point-line incidence system is called an $\alpha$-partial geometry of order $(s,t)$ if each line contains $s + 1$ points, each point lies on $t + 1$ lines, and for any point $a$ not lying on a line $L$, there exist precisely $\alpha$ lines passing through $a$ and intersecting $L$ (the notation is $pG_\alpha(s,t)$). If $\alpha = 1$, then such a geometry is called a generalized quadrangle and denoted by $GQ(s,t)$. It is established that if a pseudogeometric graph for a generalized quadrangle $GQ(s,s^2-s)$ contains more than two ovoids, then $s = 2$. It is proved that the point graph of a generalized quadrangle GQ(4,t) contains no K 4,6-subgraphs. Finally, it is shown that if some $\mu$-subgraph of a pseudogeometric graph for a generalized quadrangle $GQ(4,t)$ contains a triangle, then $t\le6$.
@article{MZM_2003_73_6_a8,
author = {A. A. Makhnev (Jr.) and A. A. Makhnev},
title = {Ovoids and {Bipartite} {Subgraphs} in {Generalized} {Quadrangles}},
journal = {Matemati\v{c}eskie zametki},
pages = {878--885},
publisher = {mathdoc},
volume = {73},
number = {6},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_6_a8/}
}
A. A. Makhnev (Jr.); A. A. Makhnev. Ovoids and Bipartite Subgraphs in Generalized Quadrangles. Matematičeskie zametki, Tome 73 (2003) no. 6, pp. 878-885. http://geodesic.mathdoc.fr/item/MZM_2003_73_6_a8/