Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2003_73_5_a2, author = {R. O. Hryniv and A. A. Shkalikov}, title = {Exponential {Stability} of {Semigroups} {Related} to {Operator} {Models} in {Mechanics}}, journal = {Matemati\v{c}eskie zametki}, pages = {657--664}, publisher = {mathdoc}, volume = {73}, number = {5}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a2/} }
TY - JOUR AU - R. O. Hryniv AU - A. A. Shkalikov TI - Exponential Stability of Semigroups Related to Operator Models in Mechanics JO - Matematičeskie zametki PY - 2003 SP - 657 EP - 664 VL - 73 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a2/ LA - ru ID - MZM_2003_73_5_a2 ER -
R. O. Hryniv; A. A. Shkalikov. Exponential Stability of Semigroups Related to Operator Models in Mechanics. Matematičeskie zametki, Tome 73 (2003) no. 5, pp. 657-664. http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a2/
[1] Chen G., Russel D. L., “A mathematical model for linear elastic systems with structural damping”, Quart. Appl. Math., 1982, no. 1, 433–454 | Zbl
[2] Chen S., Triggiani R., “Proof of extensions of two conjectures on structural damping for elastic systems”, Pacific J. Math., 136:1 (1989), 15–55 | MR | Zbl
[3] Huang F., “On the mathematical model for linear elastic systems with analytic damping”, SIAM J. Control Optim., 26:3 (1988), 714–724 | DOI | MR | Zbl
[4] Chen S., Triggiani R., “Gevrey class semigroups arising from elastic systems with gentle dissipation: the case $0\alpha1/2$”, Proc. Amer. Math. Soc., 110:2 (1990), 401–415 | DOI | MR | Zbl
[5] Huang F., “Some problems for linear elastic systems with damping”, Acta Math. Sci., 10:3 (1990), 316–326
[6] Griniv R. O., Shkalikov A. A., “Operatornye modeli v teorii uprugosti i gidromekhanike i assotsiirovannye s nimi analiticheskie polugruppy”, Vestn. Mosk. un-ta. Ser. matem., mekh., 1999, no. 5, 5–14 | MR | Zbl
[7] Lyubich Yu. I., “Klassicheskoe i lokalnoe preobrazovanie Laplasa v abstraktnoi zadache Koshi”, UMN, 21(129):3 (1966), 3–51 | Zbl
[8] Pazy A., “Semigroups of Linear Operators and Applications to Partial Differential Equations”, Applied Mathematical Sciences, 44, Springer-Verlag, New York–Berlin, 1983 | Zbl
[9] Kato T., “A generalization of the Heinz inequality”, Proc. Japan. Acad., 37 (1961), 305–308 | DOI | MR | Zbl
[10] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i prilozheniya, T. I, Mir, M., 1971 | Zbl
[11] Shkalikov A. A., “Operator pencils arising in elasticity and hydrodynamics: the instability index formula”, Operator Theory: Adv. and Appl., 87, Birkhäuser-Verlag, 1996, 358–385 | MR | Zbl
[12] Datko R., “Extending a theorem of A. M. Liapunov to Hilbert space”, J. Math. Anal. Appl., 32 (1970), 610–616 | DOI | MR | Zbl
[13] Gearhart L., “Spectral theory for contraction semigroups on Hilbert spaces”, Trans. Amer. Math. Soc., 236 (1978), 385–394 | DOI | MR | Zbl
[14] Van Casteren J. A., “Operators similar to unitary or self-adjoint ones”, Pacific J. Math., 104:1 (1983), 241–255 | MR | Zbl
[15] Naboko S. N., “Ob uslovii podobiya unitarnym ili samosopryazhennym operatoram”, Funktsion. anal. i ego prilozh., 18:1 (1984), 16–27 | MR | Zbl
[16] Malamud M. M., “Kriterii podobiya zamknutogo operatora samosopryazhennomu”, Ukr. matem. zh., 37:1 (1985), 49–56 | MR | Zbl
[17] Rolewicz S., “On uniform $N$-equistability”, J. Math. Anal. Appl., 115 (1986), 431–441 | DOI | MR
[18] Littman W., “A Generalization of a Theorem of Datko and Pazy”, Lecture Notes in Control and Inform. Sci., 130, Springer, Berlin–New York, 1989, 318–323 | MR
[19] Gomilko A. M., “Ob usloviyakh na proizvodyaschii operator ravnomerno ogranichennoi $C_0$-polugruppy operatorov”, Funktsion. analiz i ego prilozh., 33:4 (2000), 66–69 | MR
[20] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | Zbl