Exponential Stability of Semigroups Related to Operator Models in Mechanics
Matematičeskie zametki, Tome 73 (2003) no. 5, pp. 657-664

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider equations of the form $\ddot x+B\dot x+Ax=0$, where $x=x(t)$ is a function with values in the Hilbert space $\mathscr H$ , the operator $B$ is symmetric, and the operator $A$ is uniformly positive and self-adjoint in $\mathscr H$. The linear operator $\mathscr T$ generating the $C_0$-semigroup in the energy space $\mathscr H_1\times\mathscr H$ is associated with this equation. We prove that this semigroup is exponentially stable if the operator B is uniformly positive and the operator $A$ dominates $B$ in the sense of quadratic forms.
@article{MZM_2003_73_5_a2,
     author = {R. O. Hryniv and A. A. Shkalikov},
     title = {Exponential {Stability} of {Semigroups} {Related} to {Operator} {Models} in {Mechanics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {657--664},
     publisher = {mathdoc},
     volume = {73},
     number = {5},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a2/}
}
TY  - JOUR
AU  - R. O. Hryniv
AU  - A. A. Shkalikov
TI  - Exponential Stability of Semigroups Related to Operator Models in Mechanics
JO  - Matematičeskie zametki
PY  - 2003
SP  - 657
EP  - 664
VL  - 73
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a2/
LA  - ru
ID  - MZM_2003_73_5_a2
ER  - 
%0 Journal Article
%A R. O. Hryniv
%A A. A. Shkalikov
%T Exponential Stability of Semigroups Related to Operator Models in Mechanics
%J Matematičeskie zametki
%D 2003
%P 657-664
%V 73
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a2/
%G ru
%F MZM_2003_73_5_a2
R. O. Hryniv; A. A. Shkalikov. Exponential Stability of Semigroups Related to Operator Models in Mechanics. Matematičeskie zametki, Tome 73 (2003) no. 5, pp. 657-664. http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a2/