Exponential Stability of Semigroups Related to Operator Models in Mechanics
Matematičeskie zametki, Tome 73 (2003) no. 5, pp. 657-664.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider equations of the form $\ddot x+B\dot x+Ax=0$, where $x=x(t)$ is a function with values in the Hilbert space $\mathscr H$ , the operator $B$ is symmetric, and the operator $A$ is uniformly positive and self-adjoint in $\mathscr H$. The linear operator $\mathscr T$ generating the $C_0$-semigroup in the energy space $\mathscr H_1\times\mathscr H$ is associated with this equation. We prove that this semigroup is exponentially stable if the operator B is uniformly positive and the operator $A$ dominates $B$ in the sense of quadratic forms.
@article{MZM_2003_73_5_a2,
     author = {R. O. Hryniv and A. A. Shkalikov},
     title = {Exponential {Stability} of {Semigroups} {Related} to {Operator} {Models} in {Mechanics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {657--664},
     publisher = {mathdoc},
     volume = {73},
     number = {5},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a2/}
}
TY  - JOUR
AU  - R. O. Hryniv
AU  - A. A. Shkalikov
TI  - Exponential Stability of Semigroups Related to Operator Models in Mechanics
JO  - Matematičeskie zametki
PY  - 2003
SP  - 657
EP  - 664
VL  - 73
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a2/
LA  - ru
ID  - MZM_2003_73_5_a2
ER  - 
%0 Journal Article
%A R. O. Hryniv
%A A. A. Shkalikov
%T Exponential Stability of Semigroups Related to Operator Models in Mechanics
%J Matematičeskie zametki
%D 2003
%P 657-664
%V 73
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a2/
%G ru
%F MZM_2003_73_5_a2
R. O. Hryniv; A. A. Shkalikov. Exponential Stability of Semigroups Related to Operator Models in Mechanics. Matematičeskie zametki, Tome 73 (2003) no. 5, pp. 657-664. http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a2/

[1] Chen G., Russel D. L., “A mathematical model for linear elastic systems with structural damping”, Quart. Appl. Math., 1982, no. 1, 433–454 | Zbl

[2] Chen S., Triggiani R., “Proof of extensions of two conjectures on structural damping for elastic systems”, Pacific J. Math., 136:1 (1989), 15–55 | MR | Zbl

[3] Huang F., “On the mathematical model for linear elastic systems with analytic damping”, SIAM J. Control Optim., 26:3 (1988), 714–724 | DOI | MR | Zbl

[4] Chen S., Triggiani R., “Gevrey class semigroups arising from elastic systems with gentle dissipation: the case $0\alpha1/2$”, Proc. Amer. Math. Soc., 110:2 (1990), 401–415 | DOI | MR | Zbl

[5] Huang F., “Some problems for linear elastic systems with damping”, Acta Math. Sci., 10:3 (1990), 316–326

[6] Griniv R. O., Shkalikov A. A., “Operatornye modeli v teorii uprugosti i gidromekhanike i assotsiirovannye s nimi analiticheskie polugruppy”, Vestn. Mosk. un-ta. Ser. matem., mekh., 1999, no. 5, 5–14 | MR | Zbl

[7] Lyubich Yu. I., “Klassicheskoe i lokalnoe preobrazovanie Laplasa v abstraktnoi zadache Koshi”, UMN, 21(129):3 (1966), 3–51 | Zbl

[8] Pazy A., “Semigroups of Linear Operators and Applications to Partial Differential Equations”, Applied Mathematical Sciences, 44, Springer-Verlag, New York–Berlin, 1983 | Zbl

[9] Kato T., “A generalization of the Heinz inequality”, Proc. Japan. Acad., 37 (1961), 305–308 | DOI | MR | Zbl

[10] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i prilozheniya, T. I, Mir, M., 1971 | Zbl

[11] Shkalikov A. A., “Operator pencils arising in elasticity and hydrodynamics: the instability index formula”, Operator Theory: Adv. and Appl., 87, Birkhäuser-Verlag, 1996, 358–385 | MR | Zbl

[12] Datko R., “Extending a theorem of A. M. Liapunov to Hilbert space”, J. Math. Anal. Appl., 32 (1970), 610–616 | DOI | MR | Zbl

[13] Gearhart L., “Spectral theory for contraction semigroups on Hilbert spaces”, Trans. Amer. Math. Soc., 236 (1978), 385–394 | DOI | MR | Zbl

[14] Van Casteren J. A., “Operators similar to unitary or self-adjoint ones”, Pacific J. Math., 104:1 (1983), 241–255 | MR | Zbl

[15] Naboko S. N., “Ob uslovii podobiya unitarnym ili samosopryazhennym operatoram”, Funktsion. anal. i ego prilozh., 18:1 (1984), 16–27 | MR | Zbl

[16] Malamud M. M., “Kriterii podobiya zamknutogo operatora samosopryazhennomu”, Ukr. matem. zh., 37:1 (1985), 49–56 | MR | Zbl

[17] Rolewicz S., “On uniform $N$-equistability”, J. Math. Anal. Appl., 115 (1986), 431–441 | DOI | MR

[18] Littman W., “A Generalization of a Theorem of Datko and Pazy”, Lecture Notes in Control and Inform. Sci., 130, Springer, Berlin–New York, 1989, 318–323 | MR

[19] Gomilko A. M., “Ob usloviyakh na proizvodyaschii operator ravnomerno ogranichennoi $C_0$-polugruppy operatorov”, Funktsion. analiz i ego prilozh., 33:4 (2000), 66–69 | MR

[20] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | Zbl