Inverse Spectra with Two and Three Maps
Matematičeskie zametki, Tome 73 (2003) no. 5, pp. 753-758.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that, for any $1\le n\infty$, there exist four maps of the $n$-dimensional cube to itself such that the limit of any inverse sequence of $n$-cubes is the limit of some sequence with only these four bonding maps. A universal continuum in the class of all limits of sequences of $n$-cubes is constructed as the limit of an inverse sequence of $n$-cubes with one bonding map. All compact sets of trivial shape are represented by using only three maps of the Hilbert cube to itself. Two maps of the closed interval to itself such that any Knaster continuum can be obtained as the limit of an inverse sequence with only these two bonding maps are constructed.
@article{MZM_2003_73_5_a11,
     author = {O. D. Frolkina},
     title = {Inverse {Spectra} with {Two} and {Three} {Maps}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {753--758},
     publisher = {mathdoc},
     volume = {73},
     number = {5},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a11/}
}
TY  - JOUR
AU  - O. D. Frolkina
TI  - Inverse Spectra with Two and Three Maps
JO  - Matematičeskie zametki
PY  - 2003
SP  - 753
EP  - 758
VL  - 73
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a11/
LA  - ru
ID  - MZM_2003_73_5_a11
ER  - 
%0 Journal Article
%A O. D. Frolkina
%T Inverse Spectra with Two and Three Maps
%J Matematičeskie zametki
%D 2003
%P 753-758
%V 73
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a11/
%G ru
%F MZM_2003_73_5_a11
O. D. Frolkina. Inverse Spectra with Two and Three Maps. Matematičeskie zametki, Tome 73 (2003) no. 5, pp. 753-758. http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a11/

[1] Henderson G. W., “The pseudo-arc as an inverse limit with one binding map”, Duke Math. J., 31:3 (1964), 421–425 | DOI | MR | Zbl

[2] Mahavier W. S., “A chainable continuum not homeomorphic to an inverse limit on $[0,1]$ with only one bonding map”, Proc. Amer. Math. Soc., 18 (1967), 284–286 | DOI | MR

[3] Rogers J. W. Jr., “Continua not an inverse limit with a single bonding map on a polyhedron”, Proc. Amer. Math. Soc., 21:2 (1969), 281–283 | DOI | MR | Zbl

[4] Marsh D. S., “A chainable continuum not homeomorphic to an inverse limit on $[0,1]$ with only one bonding map”, Colloq. Math., 43 (1980), 75–80 | MR | Zbl

[5] Brown M., “Some applications of an approximation theorem for inverse limits”, Proc. Amer. Math. Soc., 11 (1960), 478–483 | DOI | MR | Zbl

[6] Jolly R. F., Rogers J. T. Jr., “Inverse limit spaces defined by only finitely many distinct bonding maps”, Fund. Math., 68 (1970), 117–120 | MR

[7] Schori R. M., “A universal snake-like continuum”, Proc. Amer. Math. Soc., 16:6 (1965), 1313–1316 | DOI | MR | Zbl

[8] Pasynkov B. A., “Ob universalnykh kompaktakh”, UMN, 21:4 (1966), 91–100 | MR | Zbl

[9] McCord M. C., “Universal $\mathscr P$-like compacta”, Michigan Math. J., 13 (1966), 71–85 | DOI | MR | Zbl

[10] Mardešić S., Segal J., “$\varepsilon$-mappings onto polyhedra”, Trans. Amer. Math. Soc., 109 (1963), 146–164 | DOI | MR | Zbl

[11] Rubanov I., “Kharakterizatsiya sheipov kompaktov s pomoschyu spektrov iz nervov pokrytii”, Sib. Matem. zhurn., 20:1 (1979), 128–140 | MR | Zbl

[12] Mardešić S., “Decreasing sequences of cubes and compacta of trivial shape”, Gen. Topol. Appl., 2:1 (1972), 17–23 | DOI | Zbl

[13] Keesling J., “Shape theory and topological groups”, Lect. Notes Math., 378, 1974, 233–242 | MR | Zbl

[14] McCord M. C., “Inverse limit sequences with covering maps”, Trans. Amer. Math. Soc., 114 (1965), 197–209 | DOI | MR | Zbl

[15] Rogers J. W., Jr., “On mapping indecomposable continua onto certain chainable indecomposable continua”, Proc. Amer. Math. Soc., 25 (1969), 449–456 | DOI

[16] Debski W., “On topological types of the simplest indecomposable continua”, Colloq. Math., 49 (1985), 203–211 | MR | Zbl

[17] Watkins W. T., “Homeomorphic classification of certain inverse limit spaces with open bonding maps”, Pacific J. Math., 103:2 (1982), 589–601 | MR | Zbl

[18] Galperin G. A., Zemlyakov A. N., Matematicheskie bilyardy, Nauka, M., 1990 | Zbl