Definability of Completely Decomposable Torsion-Free Abelian Groups by Groups of Homomorphisms
Matematičeskie zametki, Tome 73 (2003) no. 5, pp. 643-648.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $C$ be an Abelian group. An Abelian group $A$ in some class $\mathscr X$ of Abelian groups is said to be $\sideset{_C}{}{\mathop H}$-definable in the class $\mathscr X$ if, for any group $B\in\mathscr X$, it follows from the existence of an isomorphism $\operatorname{Hom}(C,A)\cong\operatorname{Hom}(C,B)$ that there is an isomorphism $A\cong B$. If every group in $\mathscr X$ is ${}_CH$-definable in $\mathscr X$, then the class $\mathscr X$ is called an ${}_CH$-class. In the paper, conditions are studied under which a class of completely decomposable torsion-free Abelian groups is a $\sideset{_C}{}{\mathop H}$-class, where $C$ is a completely decomposable torsion-free Abelian group.
@article{MZM_2003_73_5_a0,
     author = {T. A. Beregovaya and A. M. Sebel'din},
     title = {Definability of {Completely} {Decomposable} {Torsion-Free} {Abelian} {Groups} by {Groups} of {Homomorphisms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--648},
     publisher = {mathdoc},
     volume = {73},
     number = {5},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a0/}
}
TY  - JOUR
AU  - T. A. Beregovaya
AU  - A. M. Sebel'din
TI  - Definability of Completely Decomposable Torsion-Free Abelian Groups by Groups of Homomorphisms
JO  - Matematičeskie zametki
PY  - 2003
SP  - 643
EP  - 648
VL  - 73
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a0/
LA  - ru
ID  - MZM_2003_73_5_a0
ER  - 
%0 Journal Article
%A T. A. Beregovaya
%A A. M. Sebel'din
%T Definability of Completely Decomposable Torsion-Free Abelian Groups by Groups of Homomorphisms
%J Matematičeskie zametki
%D 2003
%P 643-648
%V 73
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a0/
%G ru
%F MZM_2003_73_5_a0
T. A. Beregovaya; A. M. Sebel'din. Definability of Completely Decomposable Torsion-Free Abelian Groups by Groups of Homomorphisms. Matematičeskie zametki, Tome 73 (2003) no. 5, pp. 643-648. http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a0/

[1] Fuchs L., “Resent Results and Problems on Abelian groups”, Topics in Abelian groups, Chicago, 1963, 9–40

[2] Hill P., “Two problems of L. Fuchs Concerning Tor and $\operatorname{Hom}$”, J. Algebra, 19:3 (1971), 379–383 | DOI | MR | Zbl

[3] Sebeldin A. M., “O gruppakh gomomorfizmov abelevykh grupp bez krucheniya”, Gruppy i moduli, 1976, 70–77

[4] Antonova N. Yu., Opredelyaemost abelevykh grupp i modulyami gruppami i modulyami gomomorfizmov, Dis. $\dots$ kand. fiz.-matem. nauk, MPGU, M., 1994

[5] Fuks L., Beskonechnye abelevy gruppy, T. 1, 2, Mir, M., 1977

[6] Sebeldin A. M., “Isomorphisme naturel des groupes des homomorphismes des groupes abeliens”, Ann. de L'IPGANG. Conakry. Ser. A, 7 (1982), 155–158

[7] Mishina A. P., “O pryamykh slagaemykh polnykh summ abelevykh grupp bez krucheniya ranga 1”, Sib. matem. zh., 1962, no. 3, 244–249 | MR | Zbl

[8] Sebeldin A. M., “Gruppy gomomorfizmov vpolne razlozhimykh abelevykh grupp bez krucheniya”, Izv. VUZov. Matem., 1973, no. 7, 77–84 | MR | Zbl