Definability of Completely Decomposable Torsion-Free Abelian Groups by Groups of Homomorphisms
Matematičeskie zametki, Tome 73 (2003) no. 5, pp. 643-648
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $C$ be an Abelian group. An Abelian group $A$ in some class $\mathscr X$ of Abelian groups is said to be $\sideset{_C}{}{\mathop H}$-definable in the class $\mathscr X$ if, for any group $B\in\mathscr X$, it follows from the existence of an isomorphism $\operatorname{Hom}(C,A)\cong\operatorname{Hom}(C,B)$ that there is an isomorphism $A\cong B$. If every group in $\mathscr X$ is ${}_CH$-definable in $\mathscr X$, then the class $\mathscr X$ is called an ${}_CH$-class. In the paper, conditions are studied under which a class of completely decomposable torsion-free Abelian groups is a $\sideset{_C}{}{\mathop H}$-class, where $C$ is a completely decomposable torsion-free Abelian group.
@article{MZM_2003_73_5_a0,
author = {T. A. Beregovaya and A. M. Sebel'din},
title = {Definability of {Completely} {Decomposable} {Torsion-Free} {Abelian} {Groups} by {Groups} of {Homomorphisms}},
journal = {Matemati\v{c}eskie zametki},
pages = {643--648},
publisher = {mathdoc},
volume = {73},
number = {5},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a0/}
}
TY - JOUR AU - T. A. Beregovaya AU - A. M. Sebel'din TI - Definability of Completely Decomposable Torsion-Free Abelian Groups by Groups of Homomorphisms JO - Matematičeskie zametki PY - 2003 SP - 643 EP - 648 VL - 73 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a0/ LA - ru ID - MZM_2003_73_5_a0 ER -
%0 Journal Article %A T. A. Beregovaya %A A. M. Sebel'din %T Definability of Completely Decomposable Torsion-Free Abelian Groups by Groups of Homomorphisms %J Matematičeskie zametki %D 2003 %P 643-648 %V 73 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a0/ %G ru %F MZM_2003_73_5_a0
T. A. Beregovaya; A. M. Sebel'din. Definability of Completely Decomposable Torsion-Free Abelian Groups by Groups of Homomorphisms. Matematičeskie zametki, Tome 73 (2003) no. 5, pp. 643-648. http://geodesic.mathdoc.fr/item/MZM_2003_73_5_a0/