On Weakly Factorizable Groups
Matematičeskie zametki, Tome 73 (2003) no. 4, pp. 565-572.

Voir la notice de l'article provenant de la source Math-Net.Ru

Groups with complemented subgroups, which are also called completely factorizable groups, were studied by P. Hall, S. N. Chernikov, and N. V. Chernikova (Baeva). For complete factorizability, it is sufficient (Theorem 1) that each proper subgroup have a normal complement in some larger subgroup. A group is said to be weakly factorizable if each of its proper subgroups is complemented in some larger subgroup; the problem of describing finite groups with this property is posed (Question 8.31) in the “Kourovka Notebook”. Some properties of these groups are considered. The question is studied for Sylow $p$-subgroups of Chevalley-type groups of characteristic $p$. The main theorem, Theorem 2, establishes the weak factorizability of the Sylow $p$-subgroups in the symmetric and alternative groups and in the classical linear groups over fields of characteristic $p>0$, excluding the unitary groups of odd dimension $>p$.
@article{MZM_2003_73_4_a7,
     author = {V. M. Levchuk},
     title = {On {Weakly} {Factorizable} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {565--572},
     publisher = {mathdoc},
     volume = {73},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a7/}
}
TY  - JOUR
AU  - V. M. Levchuk
TI  - On Weakly Factorizable Groups
JO  - Matematičeskie zametki
PY  - 2003
SP  - 565
EP  - 572
VL  - 73
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a7/
LA  - ru
ID  - MZM_2003_73_4_a7
ER  - 
%0 Journal Article
%A V. M. Levchuk
%T On Weakly Factorizable Groups
%J Matematičeskie zametki
%D 2003
%P 565-572
%V 73
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a7/
%G ru
%F MZM_2003_73_4_a7
V. M. Levchuk. On Weakly Factorizable Groups. Matematičeskie zametki, Tome 73 (2003) no. 4, pp. 565-572. http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a7/

[1] Hall Ph., “Complemented groups”, J. London Math. Soc., 12 (1937), 201–204 | Zbl

[2] Chernikov S. N., “Gruppy s sistemami dopolnyaemykh podgrupp”, Matem. sb., 35(77):1 (1954), 93–128 | MR | Zbl

[3] Baeva N. V., “Vpolne faktorizuemye gruppy”, Dokl. AN SSSR, 92:5 (1953), 877–880 | MR | Zbl

[4] Chernikova N. V., “Gruppy s dopolnyaemymi podgruppami”, Matem. sb., 39(81):3 (1956), 273–292 | MR | Zbl

[5] Gorchakov Yu. M., Gruppy s konechnymi klassami sopryazhennykh elementov, Nauka, M., 1978 | MR | Zbl

[6] Chernikov S. N., Gruppy s zadannymi svoistvami sistemy podgrupp, Nauka, M., 1980 | MR

[7] Kourovskaya tetrad (nereshennye voprosy teorii grupp), Izd. 14-e, IM SO RAN, Novosibirsk, 1999 | MR

[8] Olshanskii A. Yu., Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989 | MR

[9] Thompson J. G., “Hall subgroups of the symmetric groups”, J. Combin. Theory, 1:2 (1966), 271–279 | DOI | MR | Zbl

[10] Ito N., “On the factorizations of the linear fractional group $LF(2,p^n)$”, Acta Sci. Math., 15:1 (1953), 79–84 | MR | Zbl

[11] Kholl M., Teoriya grupp, IL, M., 1962

[12] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, 4-e izd., Nauka, M., 1996 | MR | Zbl

[13] Carter R. W., Simple Groups of Lie Type, J. Wiley, London, 1972 | MR | Zbl

[14] Burbaki N., Gruppy i algebry Li, Gl. IV–VI, Mir, M., 1972 | MR | Zbl

[15] Levchuk V. M., “Avtomorfizmy unipotentnykh podgrupp grupp Shevalle”, Algebra i logika, 29:3 (1990), 315–338 | MR | Zbl

[16] Levchuk V. M., Nuzhin Ya. N., “O stroenii grupp Ri”, Algebra i logika, 24:1 (1985), 26–41 | MR | Zbl