Identities for Generalized Polylogarithms
Matematičeskie zametki, Tome 73 (2003) no. 4, pp. 613-624.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the behavior of generalized polylogarithms under the action of the group of fractional-linear transformations of the argument. This group is formed by the transformations $z\mapsto1-z$ and $z\mapsto-z/(1-z)$, the last of which allows us to obtain identities of the form $$ \operatorname{Li}_k\biggl(\frac{-z}{1-z}\biggr) =-\sum_{|\bar s|=k}\operatorname{Li}_{\bar s}(z). $$ We prove that these identities imply the linear independence of generalized polylogarithms and the algebraic independence of classical polylogarithms over the field $\mathbb C(z)$.
@article{MZM_2003_73_4_a12,
     author = {E. A. Ulanskii},
     title = {Identities for {Generalized} {Polylogarithms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {613--624},
     publisher = {mathdoc},
     volume = {73},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a12/}
}
TY  - JOUR
AU  - E. A. Ulanskii
TI  - Identities for Generalized Polylogarithms
JO  - Matematičeskie zametki
PY  - 2003
SP  - 613
EP  - 624
VL  - 73
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a12/
LA  - ru
ID  - MZM_2003_73_4_a12
ER  - 
%0 Journal Article
%A E. A. Ulanskii
%T Identities for Generalized Polylogarithms
%J Matematičeskie zametki
%D 2003
%P 613-624
%V 73
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a12/
%G ru
%F MZM_2003_73_4_a12
E. A. Ulanskii. Identities for Generalized Polylogarithms. Matematičeskie zametki, Tome 73 (2003) no. 4, pp. 613-624. http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a12/

[1] Minh Hoang Ngoc, Petitot M., Van Der Hoeven J., “L'algèbre des polylogarithmes par les séries génératrices”, Séries formelles et combinatoire algébrique, Barcelone, 1999

[2] Sorokin V. N., “O mere transtsendentnosti chisla $\pi^2$”, Matem. sb., 187:12 (1996), 87–121 | MR

[3] Hoffman M. E., “Multiple harmonic series”, Pacific J. Math., 152:2 (1992), 275–290 | MR | Zbl

[4] Minh Hoang Ngoc, Petitot M., “Lyndon words, polylogarythms and Riemann's $\zeta$ function”, Discrete Math., 217:1–3 (2000), 273–292 | DOI | MR | Zbl

[5] Minh Hoang Ngoc, Petitot M., Van Der Hoeven J., “Shuffle algebra and polylogarithms”, Discrete Math., 225:1–3 (2000), 217–230 | DOI | MR | Zbl

[6] Shidlovskii A. B., “O transtsendentnosti i algebraicheskoi nezavisimosti znachenii nekotorykh $E$-funktsii”, Vestn. MGU. Ser. 1. Matem., mekh., 1961, no. 5, 44–59 | MR

[7] Zudilin V. V., “O mere irratsionalnosti znachenii $G$-funktsii”, Izv. RAN. Ser. matem., 60:1 (1996), 87–114 | MR | Zbl