An Application of the Gauss Lemma to the Study of Pseudorandom Sequences Based on Quadratic Residues
Matematičeskie zametki, Tome 73 (2003) no. 4, pp. 603-612
Cet article a éte moissonné depuis la source Math-Net.Ru
In the context of the study of pseudorandom sequences that use quadratic residues modulo the prime $p$, the constructive description of the set of prime moduli for which given integers are quadratic residues is considered. Using the Gauss Lemma, we prove a criterion of combinatorial nature for a given integer $a$ to be a quadratic residue prime modulo $p$. It is shown how to apply this criterion to the problem of effective description of the prime moduli $p$ satisfying the equation $\bigl(\frac ap\bigr)=1$ for each $p$ from a given finite set $M$.
@article{MZM_2003_73_4_a11,
author = {V. E. Tarakanov},
title = {An {Application} of the {Gauss} {Lemma} to the {Study} of {Pseudorandom} {Sequences} {Based} on {Quadratic} {Residues}},
journal = {Matemati\v{c}eskie zametki},
pages = {603--612},
year = {2003},
volume = {73},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a11/}
}
V. E. Tarakanov. An Application of the Gauss Lemma to the Study of Pseudorandom Sequences Based on Quadratic Residues. Matematičeskie zametki, Tome 73 (2003) no. 4, pp. 603-612. http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a11/
[1] Koblits N., Kurs teorii chisel i kriptografii, TVP, M., 2001
[2] Brands S. A., Gill R. D., “Cryptography, statistics, and pseudorandomness, I”, Probab. Math. Statist., 15 (1995), 101–114 | MR | Zbl
[3] Brands S. A., Gill R. D., “Cryptography, statistics, and pseudorandomness, II”, Probab. Math. Statist., 16 (1995), 1–17 | MR
[4] Anchel M., Goldfeld D., “Zeta functions, one-way functions, and pseudorandom number generators”, Duke Math. J., 88 (1997), 371–390 | DOI | MR
[5] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1964
[6] Khasse G., Lektsii po teorii chisel, IL, M., 1953