On the Global Stability of Solutions of Moment Systems in Nonequilibrium Thermodynamics
Matematičeskie zametki, Tome 73 (2003) no. 4, pp. 590-602.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the linearization of the Cauchy problem and the mixed problem for the system of Grad–Hermite moments in nonequilibrium thermodynamics in the neighborhood of the equilibrium state. Stability conditions for solutions of the Cauchy problem are proved as a generalization of the classical Hermite–Biller theorem on stable polynomials. For the mixed problem, we prove an analog of the Vishik–Lyusternik theorem on small singular perturbations of general elliptic problems. The last observation allows us to introduce the Shapiro–Lopatinskii condition, which implies the well-posedness of the mixed problem.
@article{MZM_2003_73_4_a10,
     author = {E. V. Radkevich},
     title = {On the {Global} {Stability} of {Solutions} of {Moment} {Systems} in {Nonequilibrium} {Thermodynamics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {590--602},
     publisher = {mathdoc},
     volume = {73},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a10/}
}
TY  - JOUR
AU  - E. V. Radkevich
TI  - On the Global Stability of Solutions of Moment Systems in Nonequilibrium Thermodynamics
JO  - Matematičeskie zametki
PY  - 2003
SP  - 590
EP  - 602
VL  - 73
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a10/
LA  - ru
ID  - MZM_2003_73_4_a10
ER  - 
%0 Journal Article
%A E. V. Radkevich
%T On the Global Stability of Solutions of Moment Systems in Nonequilibrium Thermodynamics
%J Matematičeskie zametki
%D 2003
%P 590-602
%V 73
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a10/
%G ru
%F MZM_2003_73_4_a10
E. V. Radkevich. On the Global Stability of Solutions of Moment Systems in Nonequilibrium Thermodynamics. Matematičeskie zametki, Tome 73 (2003) no. 4, pp. 590-602. http://geodesic.mathdoc.fr/item/MZM_2003_73_4_a10/

[1] Muller I., Ruggeri T., Extended Thermodynamics, Springer-Verlag, 1993

[2] Grad H., “On the kinetic theory of rarefied gases”, Comm. Pure Appl. Math., 2 (1949), 331–407 | DOI | MR | Zbl

[3] Struchtrup H., Weiss W., “Temperature jump and velocity slip in the moment method”, Continuum Mech. Thermodyn., 12 (2000), 1–18 | DOI | MR | Zbl

[4] Junk M., “Domain of definition of Levermore's five-moment system”, J. Stat. Phys., 93 (1998), 1143–1167 | DOI | MR | Zbl

[5] Hörmander L., Lectures on Nonlinear Hyperbolic Differential Equations, Math. Appl., Springer-Verlag, 1997 | Zbl

[6] Volevich L. R., Radkevich E. V., “Ravnomernye otsenki reshenii zadachi Koshi dlya giperbolicheskikh uravnenii s malym parametrom pri starshikh proizvodnykh”, Differents. uravneniya (to appear)

[7] Hermite Ch., Oeuvres, I, Paris, 1905, 397–414

[8] Babich V. M., Klimova A. A., “Hyperbolic equation with large parameter at lower terms, and the hierarchy of waves”, St.-Peterburg Math. J., 6:5 (1995), 1001–1038 | MR

[9] Hadamard J., “Sur les problemes aux derivées partielles et leur signification physique”, Bull. Univ. Princeton, 13 (1902)

[10] Lax P., “Hyperbolic system of conservation laws, II”, Comm. Pure Appl. Math., 10 (1957), 537–566 | DOI | MR | Zbl

[11] Vishik M. I., Lyusternik L. A., “Asimptoticheskoe povedenie reshenii lineinykh differentsialnykh uravnenii s bolshimi ili bystro menyayuschimisya koeffitsientami i granichnymi usloviyami”, UMN, 15:4 (1960), 27–95 | MR | Zbl

[12] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | Zbl