On the Representation of Infinitely Differentiable Functions by Series of Exponentials
Matematičeskie zametki, Tome 73 (2003) no. 3, pp. 402-415.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of representing elements of a weighted space of infinitely differentiable functions on the real line by series of exponentials.
@article{MZM_2003_73_3_a6,
     author = {I. Kh. Musin},
     title = {On the {Representation} of {Infinitely} {Differentiable} {Functions} by {Series} of {Exponentials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {402--415},
     publisher = {mathdoc},
     volume = {73},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a6/}
}
TY  - JOUR
AU  - I. Kh. Musin
TI  - On the Representation of Infinitely Differentiable Functions by Series of Exponentials
JO  - Matematičeskie zametki
PY  - 2003
SP  - 402
EP  - 415
VL  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a6/
LA  - ru
ID  - MZM_2003_73_3_a6
ER  - 
%0 Journal Article
%A I. Kh. Musin
%T On the Representation of Infinitely Differentiable Functions by Series of Exponentials
%J Matematičeskie zametki
%D 2003
%P 402-415
%V 73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a6/
%G ru
%F MZM_2003_73_3_a6
I. Kh. Musin. On the Representation of Infinitely Differentiable Functions by Series of Exponentials. Matematičeskie zametki, Tome 73 (2003) no. 3, pp. 402-415. http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a6/

[1] Mandelbroit S., Primykayuschie ryady, regulyarizatsiya posledovatelnostei, primeneniya, IL, M., 1955

[2] Musin I. Kh., “Teorema tipa Peli–Vinera dlya vesovogo prostranstva beskonechno differentsiruemykh funktsii”, Izv. RAN. Ser. matem., 64:6 (2000), 181–204 | MR | Zbl

[3] Musin I. Kh., On the Fourier–Laplace transform of functionals on a weighted space of infinitely differentiable functions, , 1999 E-print funct-an/9911067

[4] Napalkov V. V., “Dostatochnye mnozhestva v odnom klasse tselykh funktsii”, Voprosy approksimatsii funktsii kompleksnogo peremennogo, Bashkirskii filial AN SSSR. Otdel fiziki i matem., Ufa, 1980, 110–115

[5] Korobeinik Yu. F., “Absolyutno predstavlyayuschie sistemy eksponent s mnimymi pokazatelyami v prostranstvakh beskonechno differentsiruemykh funktsii”, Dokl. RAN, 372:1 (2000), 17–20 | MR | Zbl

[6] Korobeinik Yu. F., “Absolyutno predstavlyayuschie sistemy eksponent s mnimymi pokazatelyami v prostranstvakh beskonechno differentsiruemykh funktsii i prodolzhimost po Borelyu–Uitni”, Aktualnye problemy matematicheskogo analiza, Izd-vo Gingo, Rostov-na-Donu, 2000, 8–22 | MR

[7] Korobeinik Yu. F., “On absolutely representing systems in spaces of infinitely differentiable functions”, Studia Math., 139:2 (2000), 175–188 | MR | Zbl

[8] Napalkov V. V., “O sravnenii topologii v nekotorykh prostranstvakh tselykh funktsii”, Dokl. AN SSSR, 264:4 (1982), 827–830 | MR | Zbl

[9] Musin I. Kh., “Syur'ektivnost lineinogo differentsialnogo operatora v vesovom prostranstve beskonechno differentsiruemykh funktsii”, Matem. zametki, 71:5 (2002), 713–724 | MR | Zbl

[10] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, T. II, GITTL, M.–L., 1948

[11] Musin I. Kh., “O preobrazovanii Fure–Laplasa funktsionalov na vesovom prostranstve beskonechno differentsiruemykh funktsii”, Matem. sb., 191:10 (2000), 57–86 | MR | Zbl

[12] Ehrenpreis L., Fourier Analysis in Several Complex Variables, Wiley Interscience Publ., New York, 1970 | Zbl

[13] Yulmukhametov R. S., “Approksimatsiya subgarmonicheskikh funktsii”, Anal. Math., 11:3 (1985), 257–282 | DOI | MR | Zbl

[14] Ronkin L. I., Vvedenie v teoriyu tselykh funktsii mnogikh peremennykh, Nauka, M., 1971 | Zbl

[15] Leontev A. F., Ryady eksponent, Nauka, M., 1976

[16] Evgrafov M. A., Asimptoticheskie otsenki i tselye funktsii, Nauka, M., 1979 | Zbl