Scattering by a Cylindrical Trap in the Critical Case
Matematičeskie zametki, Tome 73 (2003) no. 3, pp. 355-370.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a two-dimensional analog of the Helmholtz resonator with walls of finite thickness in the critical case, for which there exists a frequency which is simultaneously the limit of poles generated both by the bounded component of the resonator and by a narrow communication channel. Under the assumption that the limit frequency is a simple frequency for the bounded component, by using the method of matched asymptotic expansions, we construct asymptotics for the two sequences of poles converging to this frequency. We obtain explicit formulas for the leading terms of the asymptotics of poles and for the solution of the scattering problem.
@article{MZM_2003_73_3_a3,
     author = {R. R. Gadyl'shin},
     title = {Scattering by a {Cylindrical} {Trap} in the {Critical} {Case}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {355--370},
     publisher = {mathdoc},
     volume = {73},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a3/}
}
TY  - JOUR
AU  - R. R. Gadyl'shin
TI  - Scattering by a Cylindrical Trap in the Critical Case
JO  - Matematičeskie zametki
PY  - 2003
SP  - 355
EP  - 370
VL  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a3/
LA  - ru
ID  - MZM_2003_73_3_a3
ER  - 
%0 Journal Article
%A R. R. Gadyl'shin
%T Scattering by a Cylindrical Trap in the Critical Case
%J Matematičeskie zametki
%D 2003
%P 355-370
%V 73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a3/
%G ru
%F MZM_2003_73_3_a3
R. R. Gadyl'shin. Scattering by a Cylindrical Trap in the Critical Case. Matematičeskie zametki, Tome 73 (2003) no. 3, pp. 355-370. http://geodesic.mathdoc.fr/item/MZM_2003_73_3_a3/

[1] Beale J. T., “Scattering frequencies of resonator”, Comm. Pure Appl. Math., 26 (1973), 549–564 | DOI | MR

[2] Arsenev A. A., “Ob osobennostyakh analiticheskogo prodolzheniya i rezonansnykh svoistvakh resheniya zadachi rasseyaniya dlya uravneniya Gelmgoltsa”, ZhVMiMF, 12 (1971), 112–138 | MR

[3] Brown R. M., Hislop P. D., Martinez A., “Eigenvalues and resonances for domains with tubes: Neumann boundary conditions”, J. Diff. Equations, 115 (1995), 458–476 | DOI | MR | Zbl

[4] Gadylshin R. R., “O rasseyanii na tsilindre s uzkoi schelyu i stenkami konechnoi tolschiny”, TMF, 106:1 (1996), 24–43 | MR | Zbl

[5] Van-Daik M., Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1967

[6] Naife A. Kh., Metody vozmuschenii, Mir, M., 1986

[7] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989

[8] Gadyl'shin R. R., “On the scattering of $H$-polarized electromagnetic field by an ideally conductive cylindrical body of a trapping type”, C. R. Acad. Sci. Paris Sér. II b, 329 (2001), 137–140 | Zbl

[9] Sanches-Palensia E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1985

[10] Lord Rayleigh, “The theory of Helmholtz resonator”, Proc. Royal Soc. London, 92 (1916), 265–275

[11] Arsenev A. A., “O suschestvovanii rezonansnykh polyusov i rezonansov pri rasseyanii v sluchae kraevykh uslovii II i III roda”, ZhVMiMF, 16:3 (1976), 718–724 | MR | Zbl

[12] Gadyl'shin R. R., “On scattering frequencies of acoustic resonator”, C. R. Acad. Sci. Paris Sér. I, 316 (1993), 959–963 | MR | Zbl

[13] Gadyl'shin R. R., “Asymptotics of scattering frequencies with small imaginary parts for acoustic resonator”, Math. Modelling Numer. Anal., 28:6 (1994), 761–780 | Zbl

[14] Gadylshin R. R., “Dvumernyi analog rezonatora Gelmgoltsa s idealno zhestkimi stenkami”, Differents. uravneniya, 30 (1994), 221–229 | MR | Zbl

[15] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973

[16] Gadylshin R. R., “O polyusakh akusticheskogo rezonatora”, Funktsion. analiz i ego prilozh., 27:4 (1993), 3–16 | MR | Zbl

[17] Gadyl'shin R. R., “On acoustic Helmholtz resonator and on its electromagnetic analogue”, J. Math. Phys., 35 (1994), 3464–3481 | DOI | MR | Zbl