Comparison of Sampling Schemes with and without Replacement
Matematičeskie zametki, Tome 73 (2003) no. 2, pp. 195-205.

Voir la notice de l'article provenant de la source Math-Net.Ru

An urn contains colored balls, $a$ balls of each of $N$ different colors. The balls are drawn sequentially and equiprobably, one ball at a time, and then each drawn ball drawn is either returned to the urn (sampling with replacement) or left outside the urn (sampling without replacement). The drawing continues until some $k$ colors are drawn at least $m$ times each. Observable statistics are the numbers $\mu_r$, $r=1,2,\dots$, of colors that have appeared precisely $r$ times each by the stopping time. The asymptotic behavior as $N\to\infty$ of these values for each of the two sampling models is studied; the possibility of their use for identifying the model is discussed.
@article{MZM_2003_73_2_a3,
     author = {G. I. Ivchenko},
     title = {Comparison of {Sampling} {Schemes} with and without {Replacement}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {195--205},
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a3/}
}
TY  - JOUR
AU  - G. I. Ivchenko
TI  - Comparison of Sampling Schemes with and without Replacement
JO  - Matematičeskie zametki
PY  - 2003
SP  - 195
EP  - 205
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a3/
LA  - ru
ID  - MZM_2003_73_2_a3
ER  - 
%0 Journal Article
%A G. I. Ivchenko
%T Comparison of Sampling Schemes with and without Replacement
%J Matematičeskie zametki
%D 2003
%P 195-205
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a3/
%G ru
%F MZM_2003_73_2_a3
G. I. Ivchenko. Comparison of Sampling Schemes with and without Replacement. Matematičeskie zametki, Tome 73 (2003) no. 2, pp. 195-205. http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a3/

[1] Ivanov A. V., Ivchenko G. I., “On waiting time in the Markov–Pólya scheme”, J. Math. Sci., 91:3 (1998), 2904–2916 | DOI | MR | Zbl

[2] Ivchenko G. I., “Vremya ozhidaniya i svyazannye s nim kharakteristiki v polinomialnoi skheme”, Diskretnaya matem., 5:3 (1993), 3–34 | MR | Zbl

[3] Ivchenko G. I., Medvedev Yu. I., “Smesi veroyatnostnykh raspredelenii i sluchainye razmescheniya”, Tr. po diskretnoi matem., 2 (1998), 169–182 | MR | Zbl

[4] Ivchenko G. I., Ivanov A. V., “Razdelimye statistiki v obratnykh urnovykh zadachakh”, Diskretnaya matem., 7:2 (1995), 103–117 | MR | Zbl

[5] Ivanov A. V., Ivchenko G. I., “Razdelimye statistiki i momenty ostanovki v skheme bespovtornogo vybora”, Diskretnaya matem., 9:1 (1997), 43–58 | MR | Zbl

[6] Holst L., Hüsler J., “Sequential urn schemes and birth processes”, Adv. Appl. Probab., 17 (1985), 257–279 | DOI | MR | Zbl

[7] Bolshev L. N., Smirnov N. V., Tablitsy matematicheskoi statistiki, Nauka, M., 1983 | Zbl

[8] Bekessy A., “On classical occupancy problems, II”, Magy. Tud. Akad. Mat. Kutató Int. Közl., 9A:1–2 (1964), 133–141 | MR

[9] Erdös P., Renyi A., “On a classical problem of probability theory”, Magy. Tud. Akad. Mat. Kutató Int. Közl., 6A:1–2 (1961), 215–220