Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2003_73_2_a2, author = {A. M. Voroncov}, title = {Joint {Approximations} of {Distributions} in {Banach} {Spaces}}, journal = {Matemati\v{c}eskie zametki}, pages = {179--194}, publisher = {mathdoc}, volume = {73}, number = {2}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a2/} }
A. M. Voroncov. Joint Approximations of Distributions in Banach Spaces. Matematičeskie zametki, Tome 73 (2003) no. 2, pp. 179-194. http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a2/
[1] Rubel L. A., Stray A., “Joint approximation in the unit disc”, J. Approximation Theory, 37:1 (1983), 44–50 | DOI | MR | Zbl
[2] Gonzalez F. P., Stray A., “Farrell and Mergelyan sets for $H^p$ spaces”, Michigan Math. J., 36 (1989), 379–386 | DOI | MR | Zbl
[3] Danielyan A. A., “O nekotorykh zadachakh, voznikayuschikh iz problemy Rubelya ob odnovremennoi approksimatsii”, Dokl. RAN, 341:1 (1995), 10–12 | MR | Zbl
[4] Paramonov P. V., Verdera J., “Approximation by solutions of elliptic equations on closed subsets of Euclidean space”, Math. Scand., 74 (1994), 249–259 | MR | Zbl
[5] Boven A., Paramonov P. V., “Approksimatsiya meromorfnymi i tselymi resheniyami ellipticheskikh uravnenii v banakhovykh prostranstvakh raspredelenii”, Matem. sb., 189:4 (1998), 481–502 | MR
[6] Davie A. M., Øksendal B. K., “Rational approximation on the union of sets”, Proc. Amer. Math. Soc., 29:3 (1971), 581–584 | DOI | MR | Zbl
[7] Verdera J., “$C^m$-approximation by solutions of elliptic equations and Calderon–Zygmund operators”, Duke Math. J., 55 (1987), 157–187 | DOI | MR | Zbl
[8] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, UMN, 22:6 (1967), 141–199 | MR
[9] O'Farrell A. G., “$T$-invariance”, Proc. Roy. Irish Acad., 92 A:2 (1992), 185–203 | MR | Zbl
[10] Khavinson D., “On uniform approximation by harmonic functions”, Michigan Math. J., 34 (1987), 465–473 | DOI | MR | Zbl
[11] Gote P. M., Paramonov P. V., “Approksimatsiya garmonicheskimi funktsiyami v $C^1$-norme i garmonicheskii $C^1$-poperechnik kompaktnykh mnozhestv v $\mathbb R^n$”, Matem. zametki, 53:4 (1994), 21–30 | MR
[12] Gorokhov Yu. A., “Approksimatsiya garmonicheskimi funktsiyami v $C^m$-norme i garmonicheskaya $C^m$-vmestimost kompaktnykh mnozhestv v $\mathbb R^n$”, Matem. zametki, 62:3 (1997), 372–382 | MR | Zbl
[13] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi prizvodnymi, V 4-kh tomakh. T. 1, Mir, M., 1986
[14] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi prizvodnymi, V 4-kh tomakh. T. 2, Mir, M., 1986
[15] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | Zbl
[16] Stein I. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973
[17] O'Farrell A. G., “Hausdorff content and rational approximation in fractional Lipschitz norms”, Trans. Amer. Math. Soc., 228 (1977), 187–206 | DOI | MR | Zbl