Joint Approximations of Distributions in Banach Spaces
Matematičeskie zametki, Tome 73 (2003) no. 2, pp. 179-194.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a given homogeneous elliptic partial differential operator $L$ with constant complex coefficients, two Banach spaces $V_1$ and $V_2$ of distributions in $\mathbb R^N$, and compact sets $X_1$ and $X_2$ in $\mathbb R^N$, we study joint approximations in the norms of the spaces $V_1(X_1)$ and $V_2(X_2)$ (the spaces of Whitney jet-distributions) by the solutions of the equation $L_u=0$ in neighborhoods of the set $X_1\cup X_2$. We obtain a localization theorem, which, under certain conditions, allows one to reduce the above-cited approximation problem to the corresponding separate problems in each of the spaces.
@article{MZM_2003_73_2_a2,
     author = {A. M. Voroncov},
     title = {Joint {Approximations} of {Distributions} in {Banach} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {179--194},
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a2/}
}
TY  - JOUR
AU  - A. M. Voroncov
TI  - Joint Approximations of Distributions in Banach Spaces
JO  - Matematičeskie zametki
PY  - 2003
SP  - 179
EP  - 194
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a2/
LA  - ru
ID  - MZM_2003_73_2_a2
ER  - 
%0 Journal Article
%A A. M. Voroncov
%T Joint Approximations of Distributions in Banach Spaces
%J Matematičeskie zametki
%D 2003
%P 179-194
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a2/
%G ru
%F MZM_2003_73_2_a2
A. M. Voroncov. Joint Approximations of Distributions in Banach Spaces. Matematičeskie zametki, Tome 73 (2003) no. 2, pp. 179-194. http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a2/

[1] Rubel L. A., Stray A., “Joint approximation in the unit disc”, J. Approximation Theory, 37:1 (1983), 44–50 | DOI | MR | Zbl

[2] Gonzalez F. P., Stray A., “Farrell and Mergelyan sets for $H^p$ spaces”, Michigan Math. J., 36 (1989), 379–386 | DOI | MR | Zbl

[3] Danielyan A. A., “O nekotorykh zadachakh, voznikayuschikh iz problemy Rubelya ob odnovremennoi approksimatsii”, Dokl. RAN, 341:1 (1995), 10–12 | MR | Zbl

[4] Paramonov P. V., Verdera J., “Approximation by solutions of elliptic equations on closed subsets of Euclidean space”, Math. Scand., 74 (1994), 249–259 | MR | Zbl

[5] Boven A., Paramonov P. V., “Approksimatsiya meromorfnymi i tselymi resheniyami ellipticheskikh uravnenii v banakhovykh prostranstvakh raspredelenii”, Matem. sb., 189:4 (1998), 481–502 | MR

[6] Davie A. M., Øksendal B. K., “Rational approximation on the union of sets”, Proc. Amer. Math. Soc., 29:3 (1971), 581–584 | DOI | MR | Zbl

[7] Verdera J., “$C^m$-approximation by solutions of elliptic equations and Calderon–Zygmund operators”, Duke Math. J., 55 (1987), 157–187 | DOI | MR | Zbl

[8] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, UMN, 22:6 (1967), 141–199 | MR

[9] O'Farrell A. G., “$T$-invariance”, Proc. Roy. Irish Acad., 92 A:2 (1992), 185–203 | MR | Zbl

[10] Khavinson D., “On uniform approximation by harmonic functions”, Michigan Math. J., 34 (1987), 465–473 | DOI | MR | Zbl

[11] Gote P. M., Paramonov P. V., “Approksimatsiya garmonicheskimi funktsiyami v $C^1$-norme i garmonicheskii $C^1$-poperechnik kompaktnykh mnozhestv v $\mathbb R^n$”, Matem. zametki, 53:4 (1994), 21–30 | MR

[12] Gorokhov Yu. A., “Approksimatsiya garmonicheskimi funktsiyami v $C^m$-norme i garmonicheskaya $C^m$-vmestimost kompaktnykh mnozhestv v $\mathbb R^n$”, Matem. zametki, 62:3 (1997), 372–382 | MR | Zbl

[13] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi prizvodnymi, V 4-kh tomakh. T. 1, Mir, M., 1986

[14] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi prizvodnymi, V 4-kh tomakh. T. 2, Mir, M., 1986

[15] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | Zbl

[16] Stein I. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973

[17] O'Farrell A. G., “Hausdorff content and rational approximation in fractional Lipschitz norms”, Trans. Amer. Math. Soc., 228 (1977), 187–206 | DOI | MR | Zbl