Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2003_73_2_a0, author = {G. A. Ambartsumian and A. V. Burobin}, title = {Continuation of {Functions} {Representable} via {Infinitely} {Multiple} {Exponentials} with {Alternating} {Exponents}}, journal = {Matemati\v{c}eskie zametki}, pages = {163--172}, publisher = {mathdoc}, volume = {73}, number = {2}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a0/} }
TY - JOUR AU - G. A. Ambartsumian AU - A. V. Burobin TI - Continuation of Functions Representable via Infinitely Multiple Exponentials with Alternating Exponents JO - Matematičeskie zametki PY - 2003 SP - 163 EP - 172 VL - 73 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a0/ LA - ru ID - MZM_2003_73_2_a0 ER -
%0 Journal Article %A G. A. Ambartsumian %A A. V. Burobin %T Continuation of Functions Representable via Infinitely Multiple Exponentials with Alternating Exponents %J Matematičeskie zametki %D 2003 %P 163-172 %V 73 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a0/ %G ru %F MZM_2003_73_2_a0
G. A. Ambartsumian; A. V. Burobin. Continuation of Functions Representable via Infinitely Multiple Exponentials with Alternating Exponents. Matematičeskie zametki, Tome 73 (2003) no. 2, pp. 163-172. http://geodesic.mathdoc.fr/item/MZM_2003_73_2_a0/
[1] Bulanov A. P., “Regulyarnost stepenei beskonechnoi kratnosti”, Izv. RAN. Ser. matem., 62:5 (1998), 49–78 | MR | Zbl
[2] Knoebel A., “Exponentials reiterated”, Amer. Math. Monthly, 88:4 (1981), 235–252 | DOI | MR | Zbl
[3] Bulanov A. P., “O stepeni beskonechnoi kratnosti s koeffitsientami, imeyuschimi poocheredno dva znacheniya”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tezisy dokladov 9-i Saratovskoi zimnei shkoly, Izd-vo Saratovskogo un-ta, Saratov, 1998, 31
[4] Ambartsumyan G. A., Burobin A. V., “O prodolzhenii funktsii, predstavlyaemykh eksponentami beskonechnoi kratnosti”, Sovremennye metody teorii funktsii i smezhnye problemy, Tezisy dokladov Voronezhskoi zimnei matematicheskoi shkoly, VGU, Voronezh, 1999, 16
[5] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974
[6] Bulanov A. P., “O skhodimosti kratnoi stepeni, yavlyayuscheisya resheniem nelineinogo differentsialnogo uravneniya”, Algebra i analiz, Materialy konferentsii, posvyaschennoi 100-letiyu B. M. Gagaeva (16–22 iyunya 1997 g., g. Kazan), Izd-vo Kazanskogo matematicheskogo obschestva, Kazan, 1997, 40–41
[7] Kholodniok M., Klich A., Kubichek M., Marek M., Metody analiza nelineinykh dinamicheskikh modelei, Mir, M., 1991